Euler's Equations

It is simple to derive a set of equations describing the motion of a rotating object in the rotating (Body) frame. If an external torque is applied, it may be difficult to work in the body system so this will most often be useful for problems with no torque.

In the Inertial system, we have

\bgroup\color{black}$\displaystyle \dot{\vec{L}}_{inertial}=\vec{\Gamma} $\egroup

where \bgroup\color{black}$ \vec{\Gamma}$\egroup is the applied torque. This time derivative can be transferred to the body system using the equation

\bgroup\color{black}$\displaystyle \left({d\vec{L}\over dt}\right)_{inertial}=\left({d\vec{L}\over dt}\right)_{rotating} + \vec{\omega}\times\vec{L} $\egroup

which we will equate to the torque to get.

  $\displaystyle {d\vec{L}_B\over dt} + \vec{\omega}\times\vec{L} = \vec{\Gamma}$    
  $\displaystyle \dot{L}_{Bk} + \omega_iL_j\epsilon_{ijk} = \Gamma_k$    
  $\displaystyle L_{Bk}=I^{(k)}\omega_k$    
  $\displaystyle \dot{L}_{Bk}=I^{(k)}\dot{\omega}_k$    
  $\displaystyle I^{(k)}\dot{\omega}_k + \omega_iI^{(j)}\omega_j\epsilon_{ijk} = \Gamma_k$    

These are the Euler Equations.
\bgroup\color{black}$ \displaystyle I^{(k)}\dot{\omega}_k + I^{(j)}\omega_j\omega_i\epsilon_{ijk} = \Gamma_k$\egroup
Note that we have used the notation \bgroup\color{black}$ I^{(k)}$\egroup with a superscript to make it clear that \bgroup\color{black}$ I$\egroup is not a vector but rather three numbers that go with the three principal axes so a combination like \bgroup\color{black}$ I^{(k)}\omega_k$\egroup does not imply a sum over \bgroup\color{black}$ k$\egroup



Subsections
Jim Branson 2012-10-21