Example: Symmetric Top with no Torque

The primary application of this equation is motion with no torque since its hard to transform a torque into the body frame. We now consider a symmetric top, that is an object with \bgroup\color{black}$ I^{(1)}=I^{(2)}\equiv I^{(12)}$\egroup. The equations are.

  $\displaystyle I^{(k)}\dot{\omega}_k + I^{(j)}\omega_j\omega_i\epsilon_{ijk} = 0$    
  $\displaystyle I^{(3)}\dot{\omega}_3 + I^{(2)}\omega_2\omega_1-I^{(1)}\omega_1\omega_2 = 0$    
  $\displaystyle I^{(3)}\dot{\omega}_3 + (I^{(2)}-I^{(1)})\omega_2\omega_1 = 0$    
  $\displaystyle \dot{\omega}_3 = 0$    
  $\displaystyle I^{(1)}\dot{\omega}_1 + (I^{(3)}-I^{(2)})\omega_3\omega_2 = 0$    
  $\displaystyle \dot{\omega}_1 + \left({I^{(3)}-I^{(2)}\over I^{(1)}}\omega_3\right)\omega_2 =0$    
  $\displaystyle I^{(2)}\dot{\omega}_2 + (I^{(1)}-I^{(3)})\omega_3\omega_1 = 0$    
  $\displaystyle \dot{\omega}_2 - \left({I^{(3)}-I^{(1)}\over I^{(2)}}\omega_3\right)\omega_1 =0$    
  $\displaystyle \Omega\equiv \left({I^{(3)}-I^{(1)}\over I^{(2)}}\omega_3\right)$    
  $\displaystyle \dot{\omega}_1 + \Omega \omega_2 =0$    
  $\displaystyle \dot{\omega}_2 - \Omega \omega_1 =0$    

We have simple coupled oscillators. With the right initial conditions the solution is

\bgroup\color{black}$\displaystyle \omega_1(t)=A\cos(\Omega t) \qquad\qquad\qquad \omega_2(t)=A\sin(\Omega t) $\egroup

\bgroup\color{black}$ \vec{\omega}$\egroup sweeps out a circle in the \bgroup\color{black}$ xy$\egroup plane, or a cone in 3D, in the Body system where we have solved the equations. The \bgroup\color{black}$ z'$\egroup axis is the symmetry axis for the object. \bgroup\color{black}$ \vec{\omega}$\egroup precesses about the symmetry axis.

Since there is no torque, \bgroup\color{black}$ \vec{L}$\egroup is constant in the inertial system. The angle between \bgroup\color{black}$ \vec{\omega}$\egroup and \bgroup\color{black}$ \vec{L}$\egroup is constant in the inertial system, since \bgroup\color{black}$ T={1\over 2}\vec{\omega}\cdot\vec{L}$\egroup is constant and the magnitude of \bgroup\color{black}$ \omega$\egroup is constant. So \bgroup\color{black}$ \vec{\omega}$\egroup precesses around \bgroup\color{black}$ \vec{L}$\egroup in the fixed system. We can choose \bgroup\color{black}$ \hat{z}_I$\egroup along \bgroup\color{black}$ \vec{L}$\egroup since it is constant. We can show that \bgroup\color{black}$ \vec{\omega}$\egroup, \bgroup\color{black}$ \vec{L}$\egroup, and \bgroup\color{black}$ \hat{z}_B$\egroup are in a plane. This can be shown by computing \bgroup\color{black}$ \vec{L}\cdot(\vec{\omega}\times\hat{z}_B)$\egroup and showing it is zero.

The rate of precession is \bgroup\color{black}$ \Omega={I^{(3)}-I^{(12)}\over I^{(3)}}\omega_3$\egroup. This is small if the moments of inertia are nearly the same. Examples of this effect are Frisbees wobbling, a spiral pass in football, and maybe the oblate earth's precession. (The dominant term for the earth is gravity driven so we need to analyze it with an external torque.)

Jim Branson 2012-10-21