Proof: Principal Axes Orthogonal

Take two principal axes \bgroup\color{black}$ \vec{\omega}^{(a)}$\egroup and \bgroup\color{black}$ \vec{\omega}^{(b)}$\egroup.

$\displaystyle I_{ik}\omega_k^{(a)}=I^{(a)}\omega_i^{(a)}$    
$\displaystyle I_{ik}\omega_k^{(b)}=I^{(b)}\omega_i^{(b)}$    

Dot each of the two equations into the other \bgroup\color{black}$ \vec{\omega}$\egroup.

$\displaystyle I_{ik}\omega_k^{(a)}\omega_i^{(b)}=I^{(a)}\omega_i^{(a)}\omega_i^{(b)}$ first eq.    
$\displaystyle I_{ik}\omega_k^{(b)}\omega_i^{(a)}=I^{(b)}\omega_i^{(a)}\omega_i^{(b)}$ second eq.    
$\displaystyle I_{ik}\omega_i^{(a)}\omega_k^{(b)}=I^{(b)}\omega_i^{(a)}\omega_i^{(b)}$ commute omegas    
$\displaystyle I_{ki}\omega_k^{(a)}\omega_i^{(b)}=I^{(b)}\omega_i^{(a)}\omega_i^{(b)}$ rename indices lhs    
$\displaystyle I_{ik}\omega_k^{(a)}\omega_i^{(b)}=I^{(b)}\omega_i^{(a)}\omega_i^{(b)}$ inerta tensor is symmetric    

In penultimate step we have renamed the indices \bgroup\color{black}$ i$\egroup and \bgroup\color{black}$ k$\egroup and in the last step we have used the fact that the tensor is symmetric. Now the left hand sides of the two equations are the same and we can set the right hand sides to be equal.

$\displaystyle I^{(a)}\omega_i^{(a)}\omega_i^{(b)}=I^{(b)}\omega_i^{(a)}\omega_i^{(b)}$    

The dot product \bgroup\color{black}$ \omega_i^{(a)}\omega_i^{(b)}$\egroup must be zero if the moments are not equal. If they are equal, we can just choose orthogonal axes.

Jim Branson 2012-10-21