Example: Cube Rotating about a Corner

We have computed the inertia tensor for a cube with the origin at a corner and the axes along the edges.

\bgroup\color{black}$\displaystyle I_{ij}'=Ms^2\begin{pmatrix}{2\over 3}&-{1\ove...
...\over 3}&-{1\over 4}\cr -{1\over 4}&-{1\over 4}&{2\over 3}\end{pmatrix} $\egroup

Lets solve the equation to find the principal axes.

\bgroup\color{black}$\displaystyle \left\vert\begin{matrix}{2\over 3}-x&-{1\over...
...ver 4}\cr -{1\over 4}&-{1\over 4}&{2\over 3}-x\end{matrix}\right\vert=0 $\egroup

(The moment of inertia will be \bgroup\color{black}$ xMs^2$\egroup with this definition of \bgroup\color{black}$ x$\egroup.) To facilitate the solution of the cubic equation, lets get some zeros in this determinant by subtracting the second row from the first and the third.

\bgroup\color{black}$\displaystyle \left\vert\begin{matrix}{11\over 12}-x&x-{11\...
...-{1\over 4}\cr 0&x-{11\over 12}&{11\over 12}-x\end{matrix}\right\vert=0 $\egroup

If we let \bgroup\color{black}$ y={11\over 12}-x$\egroup, we can write the determinant.

\bgroup\color{black}$\displaystyle y^2\left(y-{1\over 4}\right)-{1\over 4}y^2-{1\over 4}y^2=y^2\left(y-{3\over 4}\right)=0$\egroup

So there are three roots, \bgroup\color{black}$ y=0$\egroup, \bgroup\color{black}$ y=0$\egroup, and \bgroup\color{black}$ y={3\over 4}$\egroup; corresponding to three values for \bgroup\color{black}$ x$\egroup of \bgroup\color{black}$ x={11\over 12}$\egroup, \bgroup\color{black}$ x={11\over 12}$\egroup, and \bgroup\color{black}$ x={1\over 6}$\egroup.

Knowing that two equal moments of inertia along principal axes indicate a symmetry, lets find the axis for the third value \bgroup\color{black}$ I={1\over 6}Ms^2$\egroup.

  $\displaystyle I_{ij}\omega_j={1\over 6}Ms^2\omega_i$    
  $\displaystyle Ms^2\begin{pmatrix}{2\over 3}&-{1\over 4}&-{1\over 4}\cr -{1\over...
...trix}={1\over 6}Ms^2\begin{pmatrix}\omega_1\cr \omega_2\cr\omega_3\end{pmatrix}$    
  $\displaystyle \begin{pmatrix}{2\over 3}&-{1\over 4}&-{1\over 4}\cr -{1\over 4}&...
...{pmatrix}={1\over 6}\begin{pmatrix}\omega_1\cr \omega_2\cr\omega_3\end{pmatrix}$    
  $\displaystyle \begin{pmatrix}{1\over 2}&-{1\over 4}&-{1\over 4}\cr -{1\over 4}&...
...r 2}\end{pmatrix} \begin{pmatrix}\omega_1\cr \omega_2\cr\omega_3\end{pmatrix}=0$    
  $\displaystyle \begin{pmatrix}2&-1&-1\cr -1&2&-1\cr -1&-1&2\end{pmatrix}\begin{pmatrix}\omega_1\cr \omega_2\cr\omega_3\end{pmatrix}=0$    

One can see that all three of these equations are solved for the three components of \bgroup\color{black}$ \vec{\omega}$\egroup being equal. So this principal axis is the diagonal of the cube starting from the origin and going toward \bgroup\color{black}$ (1,1,1)$\egroup.

The other roots just give the same equation three times \bgroup\color{black}$ \omega_1+\omega_2+\omega_3=0$\egroup. There are many possible solutions. The equation defines a plane perpendicular to the cube diagonal. We can choose and orthogonal pair of axes in that plane.

Jim Branson 2012-10-21