The Inertia Tensor

The above calculation of the kinetic energy defines the inertia tensor.

\bgroup\color{black}$ \displaystyle T_{rot} = {1\over 2} I_{ij} \omega_i\omega_j$\egroup
\bgroup\color{black}$ \displaystyle I_{ij} \equiv \sum\limits_\alpha m_\alpha\left[\delta_{ij}r_\alpha^2-r_{\alpha i} r_{\alpha j}\right]$\egroup
Note that \bgroup\color{black}$ I_{ij}$\egroup is a symmetric tensor (under interchange of the two indices). We can also write the inertia tensor in matrix form.

\bgroup\color{black}$\displaystyle \mathbb{I}=\sum\limits_\alpha m_\alpha \begin...
...lpha x_\alpha & -z_\alpha y_\alpha & r_\alpha^2-z_\alpha^2\end{pmatrix} $\egroup

For a continuous mass distribution, we may use an integral rather than a sum over masses.

\bgroup\color{black}$\displaystyle I_{ij}=\int\limits_V\rho(\vec{r})\left[\delta_{ij}r^2-r_ir_j\right] dV $\egroup



Subsections

Jim Branson 2012-10-21