Simple Example: Inertia Tensor for Dumbbell

As a simple example of this phenomenon, consider two equal (point) masses \bgroup\color{black}$ m$\egroup, connected by a massless rod of length \bgroup\color{black}$ \ell$\egroup. Assume it rotates about a fixed axis at an angle \bgroup\color{black}$ \theta$\egroup to the rod. First, note that since

\bgroup\color{black}$\displaystyle L=\sum\limits_\alpha m_\alpha\vec{r}_\alpha\times\vec{v}_\alpha $\egroup

it must be perpendicular to the \bgroup\color{black}$ \vec{r}_\alpha$\egroup and therefore perpendicular to the rod. \bgroup\color{black}$ \vec{L}$\egroup is not parallel to \bgroup\color{black}$ \vec{\omega}$\egroup. \bgroup\color{black}$ \vec{L}$\egroup changes direction as the dumbbell rotates so a torque is required to keep it rotating about the fixed axis \bgroup\color{black}$ \vec{\omega}$\egroup.

We might also note that if the dumbbell rotates about any axis perpendicular to the rod, \bgroup\color{black}$ \vec{L}$\egroup is parallel to \bgroup\color{black}$ \vec{\omega}$\egroup.

Now lets compute the inertia tensor in two coordinate systems. Both should have the origin at the center of mass, in the middle of the rod. First, with the rod in the \bgroup\color{black}$ xy$\egroup plane at an angle \bgroup\color{black}$ \phi$\egroup from the \bgroup\color{black}$ x$\egroup axis. Note that we are working in the rotating (body) frame in which the masses are at rest.

  $\displaystyle I_{ij} \equiv \sum\limits_\alpha m_\alpha\left[\delta_{ij}r_\alpha^2-r_{\alpha i} r_{\alpha j}\right]$    
  $\displaystyle \vec{r}_2=-\vec{r}_1$    
  $\displaystyle I_{ij} = 2m{\ell^2\over 4}\left[\delta_{ij}-\hat{r}_{i} \hat{r}_{j}\right]$    
  $\displaystyle \hat{r}=(\cos\phi,\sin\phi,0)$    
  $\displaystyle I_{11} = {m\ell^2\over 2}\left[1-\cos^2\phi\right]$    
  $\displaystyle I_{12} = I_{21} = {m\ell^2\over 2}\left[-\cos\phi\sin\phi\right]$    
  $\displaystyle I_{22} = {m\ell^2\over 2}\left[1-\sin^2\phi\right]$    
  $\displaystyle I_{33} = {m\ell^2\over 2}\left[1\right]$    
  $\displaystyle I_{31} = I_{13} = {m\ell^2\over 2}\left[0\right]$    
  $\displaystyle I_{23} = I_{32} = {m\ell^2\over 2}\left[0\right]$    
  $\displaystyle \mathbb{I}={m\ell^2\over 2}\begin{pmatrix}1-\cos^2\phi & -\cos\phi\sin\phi & 0 \cr -\cos\phi\sin\phi & 1-\sin^2\phi & 0 \cr 0&0&1\end{pmatrix}$    

The inertia tensor will be diagonal for \bgroup\color{black}$ \phi=0$\egroup or \bgroup\color{black}$ \phi={\pi\over 2}$\egroup when the rod is along the \bgroup\color{black}$ x$\egroup or \bgroup\color{black}$ y$\egroup axis. The diagonal element for the axis along the rod is zero because we have assumed point masses and all the mass is on the axis.

Jim Branson 2012-10-21