The Vector Derivative \bgroup\color{black}$ \vec{\nabla}$\egroup

The derivative operator \bgroup\color{black}$ \vec{\nabla}={\partial\ \over\partial x_i}\hat{e}_i$\egroup transforms like a vector. We may take the gradient of a function \bgroup\color{black}$ \vec{\nabla}f={\partial f\over\partial x_i}\hat{e}_i$\egroup, the divergence of a vector field \bgroup\color{black}$ \vec{\nabla}\cdot \vec{B}={\partial\ \over\partial x_i}B_i$\egroup, or the curl of a vector field \bgroup\color{black}$ \vec{\nabla}\times \vec{B}={\partial\ \over\partial x_i}B_j\epsilon_{ijk}\hat{e}_k$\egroup.



Jim Branson 2012-10-21