Outline

• **Part 1 : Introduction**
 What is the LHC ?
 Why the LHC ?
 Experimental challenges
 The ATLAS and CMS experiments
 Overview of the physics programme

• **Part 2 : Precise measurements and Higgs searches**
 Measurements of the W and top masses
 Higgs searches

• **Part 3 : Physics beyond the Standard Model**
 Motivations
 Searches for SUSY
 Searches for Extra-dimensions

At LEP, Tevatron and LHC
PART 1
• **pp** machine (mainly):

\[\sqrt{s} = 14 \text{ TeV} \]

7 times higher than present highest energy machine (Tevatron/Fermilab: 2 TeV)

→ search for new massive particles up to \(m \sim 5 \text{ TeV} \)

\[
L \propto \frac{N_1 N_2}{\delta x \delta y} = 10^{34} \text{ cm}^{-2} \text{ s}^{-1}
\]

\(\sim 10^2 \) larger than LEP2, Tevatron

→ search for rare processes with small \(\sigma \) \((N = L\sigma) \)

• under construction, ready **2007**
• will be installed in the existing LEP tunnel
• two phases:
 - **2007 - 2009**: \(L \sim 10^{33} \text{ cm}^{-2} \text{ s}^{-1} \), \(\int Ldt \approx 10 \text{ fb}^{-1} \) (1 year)
 “low luminosity”
 - **2009 - 20xx**: \(L \sim 10^{34} \text{ cm}^{-2} \text{ s}^{-1} \), \(\int Ldt \approx 100 \text{ fb}^{-1} \) (1 year)
 “high luminosity”

Fabiola Gianotti, Physics at LHC, Pisa, April 2002
Four large-scale experiments:

ATLAS general-purpose pp experiments
CMS

LHCb pp experiment dedicated to b-quark physics and CP-violation. \(L = 10^{32} \text{ cm}^{-2} \text{ s}^{-1} \)

ALICE heavy-ion experiment (Pb-Pb collisions) at 5.5 TeV/nucleon \(\rightarrow \sqrt{s} \approx 1000 \text{ TeV} \) Quark-gluon plasma studies. \(L = 10^{27} \text{ cm}^{-2} \text{ s}^{-1} \)

Here: ATLAS and CMS
A few machine parameters

<table>
<thead>
<tr>
<th>Energy</th>
<th>E [TeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dipole field</td>
<td>B [T]</td>
</tr>
<tr>
<td>Luminosity</td>
<td>L [cm⁻² s⁻¹]</td>
</tr>
<tr>
<td>Beam-beam parameter</td>
<td>ξ</td>
</tr>
<tr>
<td>Total beam-beam tune spread</td>
<td>0.0034</td>
</tr>
<tr>
<td>Injection energy</td>
<td>E_i [GeV]</td>
</tr>
<tr>
<td>Circulating current/beam</td>
<td>I_{beam} [A]</td>
</tr>
<tr>
<td>Number of bunches</td>
<td>k_b</td>
</tr>
<tr>
<td>Harmonic number</td>
<td>n_{HF}</td>
</tr>
<tr>
<td>Bunch spacing</td>
<td>τ_b [ns]</td>
</tr>
<tr>
<td>Particles per bunch</td>
<td>n_b</td>
</tr>
<tr>
<td>Stored beam energy</td>
<td>E_s [MJ]</td>
</tr>
<tr>
<td>Normalized transverse emittance $(\beta\gamma)\sigma^2/\beta$</td>
<td>ε_n [µm rad]</td>
</tr>
<tr>
<td>Collisions</td>
<td>β-value at I.P.</td>
</tr>
<tr>
<td>r.m.s. beam radius at I.P.</td>
<td>β^* [m]</td>
</tr>
<tr>
<td>r.m.s. divergence at I.P.</td>
<td>σ^* [µm]</td>
</tr>
<tr>
<td>Luminosity per bunch collision</td>
<td>L_b [cm⁻²]</td>
</tr>
<tr>
<td>Crossing angle</td>
<td>ϕ [µrad]</td>
</tr>
<tr>
<td>Number of events per crossing</td>
<td>n_e</td>
</tr>
<tr>
<td>Beam lifetime</td>
<td>τ_{beam} [h]</td>
</tr>
<tr>
<td>Luminosity lifetime</td>
<td>τ_L [h]</td>
</tr>
</tbody>
</table>

Limiting factor for \sqrt{s}: bending power needed to fit ring in 27 km circumference LEP tunnel:

$$p (\text{TeV}) = 0.3 \ B (\text{T}) \ R (\text{km})$$

$$= 7 \text{ TeV} \quad \quad = 4.3 \text{ km}$$

LHC: $B=8.4 \text{ T}$: ~ 1300 superconducting dipoles working at 1.9 K (biggest cryogenic system in the world)
LHC is unprecedented machine in terms of:

- **Energy**

- **Luminosity**

- **Cost**: \(\approx 4000 \text{ MCHF} \) (machine + experiments)

- **Size/complexity of experiments**:
 \(\sim 1.3-2 \text{ times bigger than present collider experiments} \)
 \(\sim 10 \text{ times more complex} \)

- **Human resources**: \(> 4000 \) physicists in the experiments

WHY?
Motivations for LHC

Motivation 1: Origin of particle masses

Standard Model of electroweak interactions verified with precision 10^{-3} - 10^{-4} by LEP measurements at $\sqrt{s} \geq m_Z$ and Tevatron at $\sqrt{s} = 1.8$ TeV.

However: origin of particle masses not known.
Ex. : $m_\gamma = 0$
 $m_{W,Z} \approx 100$ GeV → ?
SM: Higgs mechanism gives mass to particles (Electroweak Symmetry Breaking)

\[m_H < 1 \text{ TeV} \text{ from theory} \]
For \(m_H \sim 1 \text{ TeV} \) \(\Gamma_H > m_H \) and
WW scattering violates unitarity

\[\sim m_f \]

However:
-- Higgs not found yet: only missing (but essential) piece of SM
-- present limit: \(m_H > 114.1 \text{ GeV} \) (from LEP)
-- “hint” at LEP for \(m_H \approx 115 \text{ GeV} \)
-- Tevatron may go beyond (depending on \(L \))
 \(\Rightarrow \) need a machine to discover/exclude
Higgs from \(\approx 120 \text{ GeV} \) to 1 TeV

\[\downarrow \]

LHC
Motivation 2: Is SM the “ultimate theory”?

• Higgs mechanism is weakest part of the SM:
 -- “ad hoc” mechanism, little physical justification
 -- due to radiative corrections

\[\Delta m_H^2 \sim \Lambda^2 \]

\(\Lambda \): energy scale
up to which SM
is valid (can be very large).

⇒ radiative corrections can be very large (“unnatural”)
and Higgs mass can diverge unless “fine-tuned”
cancellations \(\rightarrow \) “bad behaviour” of the theory

• Hints that forces could unify at \(E \sim 10^{16} \) GeV

\[\begin{align*}
\alpha_1 &= \alpha_{\text{EM}} \approx 1/128 \\
\alpha_2 &= \alpha_{\text{WEAK}} \approx 0.03 \\
\alpha_3 &= \alpha_{\text{S}} \approx 0.12 \\
\sqrt{s} &\sim 100 \text{ GeV}
\end{align*} \]

Running of couplings
proven experimentally

GUT: for \(E > 10^{16} \) GeV
physics become simple
(one force with strength \(\alpha_G \))
• SM is probably low-energy approximation of a more general theory

• Need a high-energy machine to look for manifestations of this theory

• e.g. Supersymmetry : $m_{\text{SUSY}} \sim \text{TeV}$
 Many other theories predict New Physics at the TeV scale
Motivation 3: Many other open questions

- Are quarks and leptons really elementary?
- Why 3 fermion families?
- Are there additional families of (heavy) quarks and leptons?
- Are there additional gauge bosons?
- What is the origin of matter-antimatter asymmetry in the universe?
- Can quarks and gluons be deconfined in a quark-gluon plasma as in early stage of universe?
- … etc. …

Motivation 4: The most fascinating one …
Unexpected physics?

Motivation 5: Precise measurements
Two ways to find new physics:

-- discover new particles/phenomena
-- measure properties of known particles as precisely as possible ⇒ find deviations from SM
LHC: known particles (W, Z, b, top, …)
produced with enormous rates thanks to
high energy (→ high σ) and L (→ high rate)

Ex. :
\[5 \times 10^8 \text{ W} \rightarrow \ell \nu \]
\[5 \times 10^7 \text{ Z} \rightarrow \ell \ell \]
\[10^7 \text{ tt pairs} \]
\[10^{12} \text{ bb pairs} \]

→ many precision measurements possible
thanks to large statistics (stat. error \(\sim \) \(1/\sqrt{N} \))
→ error dominated by systematics

Note: measurements of Z parameters performed
at LEP and SLD, however precision can be
Improved for:
--- W physics
--- Triple Gauge Couplings WWγ, WWZ
--- b-quark physics
--- top-quark physics
Phenomenology of pp collisions

Transverse momentum (in the plane perpendicular to the beam):

\[p_T = p \sin \theta \]

Rapidity:

\[\eta = -\log (\tan \frac{\theta}{2}) \]

\[\begin{align*}
\theta = 90^\circ & \rightarrow \eta = 0 \\
\theta = 10^\circ & \rightarrow \eta \approx 2.4 \\
\theta = 170^\circ & \rightarrow \eta \approx -2.4
\end{align*} \]

Total inelastic cross-section:

\[\sigma_{tot} (pp) = 70 \text{ mb} \quad \sqrt{s} = 14 \text{ TeV} \]

Rate = \[\frac{n. \text{ events}}{\text{second}} = L \times \sigma_{tot} (pp) = 10^9 \text{ interactions/s} \]

10^{34} \text{ cm}^{-2} \text{ s}^{-1}

These include two classes of interactions.
Class 1:

Most interactions due to collisions at large distance between incoming protons where protons interact as “a whole” → small momentum transfer \((\Delta p \approx \hbar / \Delta x)\) → particles in final state have large longitudinal momentum but small transverse momentum (scattering at large angle is small)

\[
< p_T > \approx 500 \text{ MeV}
\]
of charged particles in final state

\[
\frac{dN}{d\eta} \bigcup 7
\]
charged particles uniformly distributed in \(\phi\)

Most energy escapes down the beam pipe.

These are called minimum-bias events (“soft” events). They are the large majority but are not very interesting.
Monochromatic proton beam can be seen as beam of quarks and gluons with a wide band of energy. Occasionally hard scattering (“head on”) between constituents of incoming protons occurs.

Interactions at small distance \rightarrow large momentum transfer \rightarrow massive particles and/or particles at large angle are produced.

These are interesting physics events but they are rare.

Ex. $u + \bar{d} \rightarrow W^+$

$\sigma (pp \rightarrow W) \approx 150 \text{ nb} \approx 10^{-6} \sigma_{\text{tot}} (pp)$
Unlike at e+e- colliders

- effective centre-of-mass energy $\sqrt{\hat{s}}$ smaller than \sqrt{s} of colliding beams:

\[
\begin{align*}
\vec{p}_a &= x_a \vec{p}_A \\
\vec{p}_b &= x_b \vec{p}_B \\
\end{align*}
\]

\[p_A = p_B = 7 \text{ TeV} \quad \sqrt{\hat{s}} = \sqrt{x_a x_b s} \cup x \sqrt{s}
\]

if $x_a \approx x_b$

\rightarrow to produce $m \approx 100 \text{ GeV}$ $x \sim 0.01$

to produce $m \approx 5 \text{ TeV}$ $x \sim 0.35$

Fabiola Gianotti, Physics at LHC, Pisa, April 2002
• cross-section:

\[
\sigma = \int_{a,b} d x_a \, d x_b \, f_a (x_a, Q^2) \, f_b (x_b, Q^2) \, \hat{\sigma}_{ab} (x_a, x_b)
\]

\[\hat{\sigma}_{ab} \equiv \text{hard scattering cross-section}\]

\[f_i (x, Q^2) \equiv \text{parton distribution function}\]

\[
\begin{array}{c}
\text{p} \equiv \text{uud}
\end{array}
\]
Two main difficulties

- Typical of LHC:

\[R = L\sigma = 10^9 \text{ interactions / second} \]

Protons are grouped in bunches (of \(\approx 10^{11} \) protons) colliding at interaction points every 25 ns

\[\Rightarrow \text{At each interaction on average} \approx 25 \text{ minimum-bias events are produced. These overlap with interesting (high } p_T \text{) physics events, giving rise to so-called } \]

\[\text{pile-up} \]

\(\approx 1000 \) charged particles produced over \(|\eta| < 2.5 \) at each crossing.

However \(< p_T > \approx 500 \text{ MeV} \) (particles from minimum-bias).

\(\Rightarrow \) applying \(p_T \) cut allows extraction of interesting particles
Simulation of CMS inner detector

30 minimum bias events + $H \rightarrow ZZ \rightarrow 4\mu$

all charged particles with $|\eta| < 2.5$

reconstructed tracks with $p_t > 2.0$ GeV

Fabiola Gianotti, Physics at LHC, Pisa, April 2002
Pile-up is one of the most serious experimental difficulty at LHC

Large impact on detector design:

- LHC detectors must have fast response, otherwise integrate over many bunch crossings → too large pile-up

Typical response time: \(20-50\) ns
→ integrate over 1-2 bunch crossings → pile-up of 25-50 minimum bias
⇒ very challenging readout electronics

- LHC detectors must be highly granular to minimise probability that pile-up particles be in the same detector element as interesting object (e.g. \(\gamma\) from \(H \rightarrow \gamma\gamma\) decays)
→ large number of electronic channels
⇒ high cost

- LHC detectors must be radiation resistant: high flux of particles from pp collisions → high radiation environment E.g. in forward calorimeters:

\[
\begin{align*}
\text{up to } 10^{17} \text{ n/cm}^2 & \quad \text{in 10 years of LHC operation} \\
\text{up to } 10^7 \text{ Gy} &
\end{align*}
\]

Note: 1 Gy = unit of absorbed energy = 1 Joule/Kg
Radiation damage:

-- decreases like d^2 from the beam \rightarrow detectors nearest to beam pipe are more affected

-- need also radiation hard electronics (military-type technology)

-- need quality control for every piece of material

-- detector + electronics must survive 10 years of operation
Common to all hadron colliders:
high-\(p_T \) events dominated by QCD jet production:

\[
\begin{align*}
q & \rightarrow \alpha_s & q \\
q & \rightarrow \alpha_s & q
\end{align*}
\]

• Strong production → large cross-section
• Many diagrams contribute: \(qq \rightarrow qq, \) \(qg \rightarrow qg, \) \(gg \rightarrow gg, \) etc.
• Called “QCD background“

Most interesting processes are rare processes:
• involve heavy particles
• have weak cross-sections (e.g. W production)
To extract signal over QCD jet background must look at decays to photons and leptons → pay a prize in branching ratio

Ex. BR (W → jet jet) ≈ 70%
 BR (W → ℓν) ≈ 30%
ATLAS and CMS detectors

Don’t know how New Physics will manifest → detectors must be able to detect as many particles and signatures as possible:

\[e, \mu, \tau, \nu, \gamma, \text{jets, b-quarks, …} \]

⇒ “multi-purpose” experiments.

- Momentum / charge of tracks and secondary vertices (e.g. from b-quark decays) are measured in central tracker. Excellent momentum and position resolution required.

- Energy and position of electrons and photons measured in electromagnetic calorimeters. Excellent resolution and particle identification required.

- Energy and position of hadrons and jets measured mainly in hadronic calorimeters. Good coverage and granularity are required.

- Muons identified and momentum measured in external muon spectrometer (+ central tracker). Excellent resolution over \(\sim 5 \text{ GeV} < p_T < \sim \text{ TeV} \) required.

- Neutrinos “detected and measured” through measurement of missing transverse energy \(E_T^{\text{miss}} \). Calorimeter coverage over \(|\eta| < 5 \) needed.
Detection and measurement of neutrinos

- Neutrinos traverse the detector without interacting → not detected directly

- Can be detected and measured asking:

\[E_f, \vec{P}_f = E_i, \vec{P}_i \]

total energy, momentum reconstructed in final state

total energy, momentum of initial state

-- **e^+e^- colliders**: \(E_i = \sqrt{s}, \quad \vec{P}_i = 0 \)

→ if a neutrino produced, then \(E_f < E_i \) (→ missing energy)

and \(\vec{P}_f \neq 0 \) → \(\vec{P}_v = -\vec{P}_f \quad E_v = |\vec{P}_v| \)

-- **hadron colliders**: energy and momentum of initial state (energy and momentum of interacting partons) not known.

However: **transverse momentum** \(\vec{P}_{Ti} = 0 \)

→ if a neutrino produced \(\vec{P}_{Tf} \neq 0 \) (→ missing transverse momentum) and

\[|\vec{P}_{Tv}| = |\vec{P}_{Tf}| = E_T^{\text{miss}} \]
ATLAS

A Toroidal Lhc ApparatuS

- **Length**: 40 m
- **Radius**: 10 m
- **Weight**: 7000 tons
- **Electronics channels**: 10^8

Fabiola Gianotti, Physics at LHC, Pisa, April 2002
CMS
Compact Muon Solenoid

Length : 20 m
Radius : 7 m
Weight : 14000 tons
Electronics channels : 10^8

Fabiola Gianotti, Physics at LHC, Pisa, April 2002
<table>
<thead>
<tr>
<th></th>
<th>ATLAS</th>
<th>CMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAGNET (S)</td>
<td>Air-core toroids + solenoid in inner cavity</td>
<td>Solenoid</td>
</tr>
<tr>
<td></td>
<td>Calorimeters outside field</td>
<td>Calorimeters inside field</td>
</tr>
<tr>
<td></td>
<td>4 magnets</td>
<td>1 magnet</td>
</tr>
<tr>
<td>TRACKER</td>
<td>Si pixels + strips</td>
<td>Si pixels + strips</td>
</tr>
<tr>
<td></td>
<td>TRD → particle identification</td>
<td>No particle identification</td>
</tr>
<tr>
<td></td>
<td>B=2T</td>
<td>B=4T</td>
</tr>
<tr>
<td></td>
<td>$\sigma/p_T \sim 5 \times 10^{-4}$ p_T + 0.01</td>
<td>$\sigma/p_T \sim 1.5 \times 10^{-4}$ p_T + 0.005</td>
</tr>
<tr>
<td>EM CALO</td>
<td>Pb-liquid argon</td>
<td>PbWO_4 crystals</td>
</tr>
<tr>
<td></td>
<td>$\sigma/E \sim 10%/\sqrt{E}$ uniform</td>
<td>$\sigma/E \sim 2-5%/\sqrt{E}$ no longitudinal segm.</td>
</tr>
<tr>
<td>HAD CALO</td>
<td>Fe-scint. + Cu-liquid argon (10 λ)</td>
<td>Cu-scint. (> 5.8 λ +catcher)</td>
</tr>
<tr>
<td></td>
<td>$\sigma/E \sim 50%/\sqrt{E}$ ⨁ 0.03</td>
<td>$\sigma/E \sim 70%/\sqrt{E}$ ⨁ 0.05</td>
</tr>
<tr>
<td>MUON</td>
<td>Air \rightarrow $\sigma/p_T \sim 7%$ at 1 TeV standalone</td>
<td>Fe \rightarrow $\sigma/p_T \sim 5%$ at 1 TeV combining with tracker</td>
</tr>
</tbody>
</table>
ATLAS Tilecal hadronic calorimeter

ATLAS EM calo module 1

ATLAS solenoid ready

Fabiola Gianotti, Physics at LHC, Pisa, April 2002
Fabiola Gianotti, Physics at LHC

Assembly of CMS
hadronic calorimeter

Assembly of CMS
barrel magnet rings
Examples of performance requirements

- Excellent energy resolution of EM calorimeters for e/γ and of the tracking devices for μ in order to extract a signal over the backgrounds.

Example: \[H \rightarrow \gamma\gamma \]

![Graph showing the resolution of $H \rightarrow \gamma\gamma$](image)
• Excellent particle identification capability:
 e.g. $e/\text{jet}, \gamma/\text{jet separation}$

number and p_T of hadrons in a jet have large fluctuations

in some cases: one high-p_T π^0; all other particles too soft to be detected

$d (\gamma\gamma) < 10 \text{ mm}$ in calorimeter \rightarrow QCD jets can mimic photons. Rare cases, however:

$$\frac{\sigma_{jj}}{\sigma (H \, \gamma\gamma)} \sim 10^8 \quad m_{\gamma\gamma} \sim 100 \text{ GeV}$$
⇒ need detector (calorimeter) with **fine granularity** to separate overlapping photons from single photons

ATLAS EM calorimeter: 4 mm strips in first compartment
• **Trigger**: much more difficult than at e^+e^- machines

Interaction rate: $\sim 10^9$ events/second
Can record ~ 100 events/second
(event size \sim 1 MB)

\Rightarrow trigger rejection $\sim 10^7$

Trigger decision $\approx \mu s$ \rightarrow larger than interaction rate of 25 ns

store massive amount of data in pipelines while trigger performs calculations

3-level trigger

`detector` \rightarrow 109 evts/s \rightarrow `PIERCLINE` 109 evts/s \rightarrow `save` 102 evts/s
The LHC physics programme

• Search for **Standard Model Higgs boson** over $\sim 120 < m_H < 1000$ GeV.

• Search for **Supersymmetry and other physics beyond the SM** (q/ℓ compositness, leptoquarks, W'/Z', heavy q/ℓ, **unpredicted**? ….) up to masses of ~ 5 TeV

• Precise measurements:
 -- **W mass**
 -- **WWγ, WWZ** Triple Gauge Couplings
 -- **top** mass, couplings and decay properties
 -- Higgs mass, spin, couplings (if Higgs found)
 -- **B-physics**: CP violation, rare decays, B^0 oscillations (ATLAS, CMS, LHCb)
 -- **QCD** jet cross-section and α_s

 -- etc. ….

• Study of **phase transition** at high density from hadronic matter to plasma of deconfined quarks and gluons. Transition plasma \rightarrow hadronic matter happened in universe $\sim 10^{-5}$ s after Big Bang (ALICE)
Expected event rates in ATLAS/CMS for representative (known and new) physics processes at low luminosity ($L=10^{33} \text{ cm}^{-2} \text{ s}^{-1}$)

<table>
<thead>
<tr>
<th>Process</th>
<th>Events/s</th>
<th>Events/year</th>
<th>Other machines</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W\to e\nu$</td>
<td>15</td>
<td>10^8</td>
<td>$10^4 \text{ LEP} / 10^7 \text{ Tev.}$</td>
</tr>
<tr>
<td>$Z\to ee$</td>
<td>1.5</td>
<td>10^7</td>
<td>10^7 LEP</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>0.8</td>
<td>10^7</td>
<td>10^5 Tevatron</td>
</tr>
<tr>
<td>$b\bar{b}$</td>
<td>10^5</td>
<td>10^{12}</td>
<td>10^8 Belle/BaBar</td>
</tr>
<tr>
<td>$\tilde{g}\tilde{g}$ (m=1 TeV)</td>
<td>0.001</td>
<td>10^4</td>
<td>—</td>
</tr>
<tr>
<td>H (m=0.8 TeV)</td>
<td>0.001</td>
<td>10^4</td>
<td>—</td>
</tr>
<tr>
<td>QCD jets $p_T > 200 \text{ GeV}$</td>
<td>10^2</td>
<td>10^9</td>
<td>10^7</td>
</tr>
</tbody>
</table>

High L: statistics 10 times larger

\rightarrow LHC is a B-factory, top factory, W/Z factory, Higgs factory, SUSY factory, etc.
Physics rates are the strongest point in favour of LHC. What about weaknesses?

w.r.t. e^+e^- machines:
-- backgrounds (QCD) are much larger
-- trigger is much more difficult
-- centre-of-mass energy is not known
 → less kinematic constraints in final state
-- underlying event and pile-up make final state complex
-- etc. ...

w.r.t. Tevatron:
-- pile-up due to higher L
-- QCD processes grow faster with energy than electroweak processes
 e.g. $e/jet \sim 10^{-3}$ Tevatron \[p_T > 20 \text{ GeV} \]
 $e/jet \sim 10^{-5}$ LHC
How can one claim a discovery?

Suppose a new narrow particle $X \rightarrow \gamma\gamma$ is produced:

$$S = \frac{N_S}{\sqrt{N_B}}$$

$N_S =$ number of signal events
$N_B =$ number of background events

$\sqrt{N_B} \equiv$ error on number of background events

$S > 5$: signal is larger than 5 times error on background.
Probability that background fluctuates up by more than 5σ : $10^{-7} \rightarrow$ discovery

Fabiola Gianotti, Physics at LHC, Pisa, April 2002
Two critical parameters to maximise S:

- **detector resolution:**
 if σ_m increases by e.g. two, then need to enlarge peak region by two.

 $\rightarrow N_B$ increases by ~ 2
 (assuming background flat)
 N_S unchanged

 $\Rightarrow S = \frac{N_S}{\sqrt{N_B}}$
decreases by $\sqrt{2}$

 $\Rightarrow S \approx 1 / \sqrt{\sigma_m}$
detector with better resolution has larger probability to find a signal

 Note: only valid if $\Gamma_x \ll \sigma_m$. If new particle is broad, then detector resolution is not relevant.

- **integrated luminosity** :

 $N_S \sim L$
 $N_B \sim L$

 $\Rightarrow S \sim \sqrt{L}$

Fabiola Gianotti, Physics at LHC, Pisa, April 2002
Summary of Part 1

• LHC:
 - pp machine (also Pb-Pb)
 - $\sqrt{s} = 14$ TeV
 - $L = 10^{33} - 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
 - Start-up: 2007

• Four large-scale experiments:
 - ATLAS, CMS: pp multi-purpose
 - LHCb: pp B-physics
 - ALICE: Pb-Pb

• Very broad physics programme thanks to high energy and luminosity. Mass reach: ≤ 5 TeV

Few examples in next lecture ...
Very difficult environment:

-- pile-up : ~ 25 soft events produced at each crossing. Overlap with interesting high-\(p_T\) events.
-- large background from QCD processes (jet production): typical of hadron colliders

Very challenging, highly-performing and expensive detectors:

-- radiation hard
-- fast
-- granular
-- excellent energy resolution and particle identification capability
-- complicated trigger

End of Part 1