Some are described below.

The hyperbolic functions are defined by the exponential functions.

\[\cosh x = \frac{e^x + e^{-x}}{2} \]
\[\sinh x = \frac{e^x - e^{-x}}{2} \]

The hyperbolic functions are analogous to the trigonometric functions.

The hyperbolic functions have the following properties:

1. **Even functions:**
 - \(\cosh x = \cosh (-x) \)
 - \(\sinh x = -\sinh (-x) \)

2. **Odd functions:**
 - \(\cosh x = -\cosh (-x) \)
 - \(\sinh x = \sinh (-x) \)

3. **Periodicity:**
 - \(\cosh x = \cosh (x + 2k\pi) \)
 - \(\sinh x = \sinh (x + 2k\pi) \)

4. **Addition Formulas:**
 - \(\cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y \)
 - \(\sinh(x+y) = \sinh x \cosh y + \cosh x \sinh y \)

The hyperbolic functions are used in various applications, including geometry, physics, and engineering.