Happy New Year!

Physics 2D Lecture Slides
Lecture 2: Jan 6 2004

Vivek Sharma
UCSD Physics
Event, Observer, Frame of Reference

- **Event**: Something happened => (x, y, z, t)
 - Same event can be described by different observers
- **Observer(s)**: Measures event with a meter stick & a clock
- **Frame of Reference**: Observer is standing on it
 - Inertial Frame of reference ⇆ constant velocity, no force
- An event is not OWNED by an observer or frame of reference
- An event is something that happens, any observer in any reference frame can assign some (x, y, z, t) to it
- Different observers assign different space & time coordinates to same event
 - S describes it with : (x, y, z, t)
 - S' describes same thing with (x', y', x', t')

The Universe as a Clockwork of Reference Frames
"Imagining" Ref Frames And Observers

Galilean Transformation of Coordinates

Figure 39.2 An event occurs at a point P. The event is seen by two observers in inertial frames S and S', where S' moves with a velocity \mathbf{v} relative to S.

Galilean Rules of Transformation

\[
\begin{align*}
x' &= x - vt \\
y' &= y \\
z' &= z \\
t' &= t
\end{align*}
\]
Quote from Issac Newton Regarding Time

“Absolute, true and mathematical time, of itself, and from nature, flows equably without relation to anything external”

\[t = t' \]

There is a universal clock
Or
All clocks are universal

Galilean Addition Law For Velocities

This rule is used in our everyday observations (e.g. driving a car) and is consistent with our INTUITIVE notions of space and time

\[
\begin{align*}
 dx' &= dx - v \, dt \\
 dt &= dt' \\
 \frac{dx'}{dt'} &= \frac{dx}{dt} - v \\
 u'_x &= u_x - v
\end{align*}
\]

But what happens when I drive a car very fast !!

How fast: \((v = ?)\)
- As fast as light can travel in a medium !!!
Newton’s Laws and Galilean Transformation!

• But Newton’s Laws of Mechanics remain the same in All frames of references!

\[
\frac{d^2 x'}{dt^2} = \frac{d^2 x}{dt^2} - \frac{dv}{dt}
\]

\[\Rightarrow\]

\[a' = a \quad \Rightarrow \vec{F}' = \vec{F}\]

Description of Force does not change from one inertial frame of reference to another

Newtonian/Galilean Relativity

Inertial Frame of Reference is a system in which a free body is not accelerating

Laws of Mechanics must be the same in all Inertial Frames of References

\[\Rightarrow\] Newton’s laws are valid in all Inertial frames of references

\[\Rightarrow\] No Experiment involving laws of mechanics can differentiate between any two inertial frames of reference

\[\Rightarrow\] Only the relative motion of one frame of ref. w.r.t other can be detected

\[\Rightarrow\] Notion of ABSOLUTE motion thru space is meaningless

\[\Rightarrow\] There is no such thing as a preferred frame of reference

Figure 39.1 (a) The observer in the truck sees the ball move in a vertical path when thrown upward. (b) The Earth observer sees the path of the ball as a parabola.
Light Is An Electromagnetic Wave (2C)

- Maxwell’s Equations:

\[\oint_{A} E \cdot dA = \frac{Q}{\varepsilon_0} \]
\[\oint_{A} B \cdot dA = 0 \]
\[\oint_{A} E \cdot ds = -\frac{d\Phi_E}{dt} \]
\[\oint_{A} B \cdot ds = \mu_0 I + \mu_0 \varepsilon_0 \frac{d\Phi_B}{dt} \]

\[\frac{\partial^2 E}{\partial x^2} = \mu_0 \varepsilon_0 \frac{\partial^2 E}{\partial t^2} \]
\[\frac{\partial^2 B}{\partial x^2} = \mu_0 \varepsilon_0 \frac{\partial^2 B}{\partial t^2} \]

\[E = E_{\text{max}} \cos(kx - \omega t) \]
\[B = B_{\text{max}} \cos(kx - \omega t) \]

\[c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} \]

Measuring The Speed Of Light

High Technology of 1880’s: Fizeau’s measurement of speed of light

1. Shoot pulses of light to mirror
2. Light should take \(t = 2L/c \) to get back to Observer
3. Adjust the angular velocity of wheel such that reflected light from mirror makes it back to observer thru the next gap

\[C = 2.998 \times 10^8 \text{ m/s (in vacuum)} \]
Does Light Need a Medium to Propagate?

- EM waves are a different
 - What is the required medium of propagation? Aether??
 - How to verify whether Aether exists or not?
 - (Always) Do an Experiment!
- The Michelson-Morley Interferometer
 - Interferometer: device used to measure
 - Lengths or changes in lengths
 - Measured with great accuracy
 - Using interference fringes
- HW Reading: Section 1.3
 - If you don’t understand this, pl. review
 - Wave Phenomena
- Bottomline: Light needs no medium

Galilean Relativity and EM Waves

It would appear to Observer O in S frame that velocity of light

\[V_S = c + v > c \]

This contradicts Maxwell’s theory of Light!

Are Newton’s Laws and Maxwell’s laws inconsistent??!!
Newtonian Relativity & Light!

Light source, mirror & observer moving thru some medium with velocity V

Galilean Relativity →
- If the alien measures velocity of light $= c$
- Then observer must measure speed of light $= c-v$ when it is leaving him
 $= c+v$ when it is reflected back

But Maxwell’s Eq → speed of light is constant in a medium??

Must it be that laws of Mechanics behave differently from E&M in different inertial frames of references? ... if so how inelegant would nature be!

Einstein’s Special Theory of Relativity

Einstein’s Postulates of SR

- The laws of physics must be the same in all inertial reference frames

- The speed of light in vacuum has the same value ($c = 3.0 \times 10^8$ m/s), in all inertial frames, regardless of the velocity of the observer or the velocity of the source emitting the light.
Consequences of Special Relativity: Simultaneity not Absolute

Simultaneity: When two events occur at the same time, held absolute for Classical Phys

Events that are simultaneous for one Observer are not simultaneous for another Observer in relative motion

Simultaneity is not absolute !!

Time interval depends on the Reference frame it is measured in

A Simple Clock Measuring a Time Interval

\[t = \int \Delta t \]

One hour = 60 x 1 minute time intervals
Time Dilation and Proper Time

Watching a time interval (between 2 events) with a simple clock

Observer O' : $\Delta t' = \frac{2d}{c}$

Observer O : Apply Pythagoras Theorem

\[
\left(\frac{c\Delta t}{2}\right)^2 = (d)^2 + \left(\frac{v\Delta t}{2}\right)^2, \text{ but } d = \left(\frac{c\Delta t'}{2}\right)
\]

\[
\therefore \quad c^2(\Delta t)^2 = c^2(\Delta t')^2 + v^2(\Delta t)^2
\]

\[
\therefore \quad \Delta t = \frac{\Delta t'}{\sqrt{1 - \left(\frac{v}{c}\right)^2}} = \gamma \Delta t', \quad \Delta t > \Delta t'
\]

\[
\gamma = \frac{1}{\sqrt{1 - v^2/c^2}}
\]

as $v \to 0$, $\gamma \to 1$

as $v \to c$, $\gamma \to \infty$