Some Relevant Formulae, Constants and Identities

\[\lambda = \frac{h}{p} ; \quad \Delta x \Delta p \geq \frac{h}{4\pi} ; \quad \Delta E \Delta t \geq \frac{h}{4\pi} \]

Time Dep. S. Eq: \[-\frac{\hbar^2}{2m} \frac{\partial^2 \Psi(x,t)}{\partial x^2} + U(x)\Psi(x,t) = i\hbar \frac{\partial \Psi(x,t)}{\partial t} \]

Time Indep. S. Eq: \[-\frac{\hbar^2}{2m} \frac{\partial^2 \psi(x)}{\partial x^2} + U(x)\psi(x) = E \psi(x) \]

\[[\hat{p}] = \frac{\hbar}{i} \frac{d}{dx} ; \quad [p^2] = -\hbar^2 \frac{\partial^2}{\partial x^2} ; \quad [\hat{K}] = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} ; \quad [\hat{E}] = \hbar \frac{\partial}{\partial t} \]

What to expect when expecting: \[\langle Q \rangle = \int_{-}\Psi^*(x,t)[\hat{Q}]\Psi(x,t)dx \]

Uncertainty in Observable \(Q \): \[\Delta Q = \sqrt{\langle Q^2 \rangle - \langle Q \rangle^2} \]

Quantum Oscillator in Ground State \(\psi(x) = \frac{m\omega}{\pi \hbar} \sqrt{\frac{1}{2n!}} e^{-\frac{m}{2\hbar}\omega x^2} \]

Energy of Quantum Oscillator \(E_n = (n + \frac{1}{2})\hbar \omega \)
Problem 1: Go Jump Off A Quantum Cliff [12 pts]:
A beam of particles, each with energy \(E > 0 \) is incident from the left (of \(x = 0 \)) on to a potential described by
\[
\begin{align*}
U(x) &= 0 \quad \text{for region I} \quad (x < 0) \\
U(x) &= -V_0 \quad \text{for region II} \quad (x > 0)
\end{align*}
\]
(a) sketch the potential as a function of \(x \). (b) Write down the expression for the time independent Schrodinger Eqn in each region I and II in terms of wavenumbers \(k = \sqrt{\frac{2m(E - U(x))}{\hbar}} \). (c) Find the general expression for \(\psi_i(x) \) & \(\psi_f(x) \) in terms of \(k_1 \) & \(k_2 \) respectively. (d) Reviewing the physics of the situation which component of \(\psi_f(x) \) can be thrown out? Sketch the wave function in the two regions. Is the particle wavelength the same in the two regions? (e) Using the continuity conditions for \(\psi \) & \(\frac{d\psi}{dx} \), calculate the expression for relative rates at which the particles are reflected (R) and transmitted (T) across the potential step in terms of \(k_1 \) & \(k_2 \). (f) Is the reflection rate the same in the quantum picture as in the classical picture? Explain the difference.

Problem 2: “Lazy ‘R Us” Is The Physics Mantra [8 pts]:
Consider a quantum Harmonic oscillator, of mass \(m \) under potential \(U(x) = \frac{1}{2} m \omega^2 x^2 \), in its ground state. For such a system you learnt in homework that \(\langle x \rangle = 0 \) and \(\langle x^2 \rangle = \frac{\hbar}{2m\omega} \). (a) Calculate the uncertainty \(\Delta x \) in its location \(x \). (b)
Now estimate \(\langle p \rangle \). (c) Write the expression for the total non-relativistic energy for this system and use it to relate \(\langle p^2 \rangle \) to \(\langle x^2 \rangle \). (d) Finally, calculate the uncertainty \(\Delta p \) and the value of the product \(\Delta x \cdot \Delta p \). How well does your calculation agree with Heisenberg’s Uncertainty relation?

“Mantra”: A sacred word repeated in prayer or meditation.
Phys 2D Quiz 8 Solns

\[u(x) \]

\[a \]

\[-V_0 \]

\[b \]

\[k_I = \sqrt{\frac{2mE}{\hbar}} \quad k_{II} = \sqrt{\frac{2m(E + V_0)}{\hbar}} \]

So Region I: \[-\frac{\hbar^2}{2m} \frac{\partial^2 \psi}{\partial x^2} = E \psi \Rightarrow \frac{\partial^2 \psi}{\partial x^2} = -k_I^2 \psi \]

Region II: \[-\frac{\hbar^2}{2m} \frac{\partial^4 \psi}{\partial x^4} - V_0 \psi = E \psi \Rightarrow \frac{\partial^4 \psi}{\partial x^4} = -k_{II}^2 \psi \]

\[c \]

\[\psi_I = A e^{ik_I x} + B e^{-ik_I x} \]

\[\psi_{II} = C e^{ik_{II} x} + D e^{-ik_{II} x} \]

\[\text{Can lose the } D e^{-ik_{II} x} \text{ component, since nothing's reflected in } II. \]

The wavelength is not the same in the 2 regions - since \(k_{II} > k_I \), \(\lambda_{II} < \lambda_I \).

Sketch: \[\text{Wavy line} \]
Continuous: \(\psi(0) = \psi(0) \Rightarrow A + B = C \)

\[
\frac{\partial \psi}{\partial x} \bigg|_{x=0} = \frac{\partial \psi}{\partial x} \bigg|_{x=0} \Rightarrow iK_A A - iK_B B = iK_C C
\]

So \(B = \frac{K_A - K_B}{K_A + K_B} A, \quad C = \frac{2K_B}{K_A + K_B} A \)

\[
R = \frac{|B|^2}{|A|^2} = \frac{(K_A - K_B)^2}{(K_A + K_B)^2}
\]

\[
T = 1 - R = \frac{4K_A K_B}{(K_A + K_B)^2}
\]

\(\boxed{\text{No, in the classical picture } R = 0!} \)

\(\text{So not even sorta the same.} \)

2.

a) \(\Delta x = \sqrt{\langle x^2 \rangle - \langle x \rangle^2} = \left(\frac{\hbar}{2m\omega} \right)^{\frac{1}{2}} \)

b) \(\langle p \rangle = 0 \) since the thing is oscillating.

Could calculate this too.

\[\frac{p^2}{2m} + \frac{1}{2} m \omega^2 x^2 = E, \text{ so } \langle p^2 \rangle = 2m \langle E \rangle - \frac{1}{2} m \omega^2 \langle x^2 \rangle \]

2)

\[\langle p^2 \rangle = 2m E - m^2 \omega^2 \frac{\hbar^2}{2m^2} = 2m \frac{1}{2} k_0 - \frac{1}{2} \hbar \omega = \frac{1}{2} \hbar \omega \]

So \(\Delta p = \sqrt{\langle p^2 \rangle - \langle p \rangle^2} = \left(\frac{\hbar}{2m\omega} \right)^{\frac{1}{2}} \Rightarrow \Delta x \Delta p = \frac{\hbar}{2} \]

Agrees with HUP! (It's the minimum uncertainty.)