3.10

a) Let \(x \) be thickness of 1 card.

Then \(S^2 x = 0.59 \pm 0.005 \text{ in} \)

\[
\frac{1}{S^2} \Rightarrow x = 0.0113 \pm 0.0001 \text{ in}
\]

b) Let \(N \) be the minimum number of cards needed.

If error in 1 card's thickness = \(2 \times 10^{-5} \text{ in} \)

error for \(N \) cards = \(N \times 2 \times 10^{-5} \geq 0.005 \text{ in} \)

\[
\Rightarrow N \geq 250 \quad \text{or 5 packs.}
\]

3.22

\(I = 2.1 \pm 0.2 \text{ A} \), \(V = 1.02 \pm 0.01 \text{ V} \)

\(P = IV \); \(R = V/I \)

In both cases, fractional error

\[
\delta P \over P = \delta R \over R = \sqrt{(\delta I \over I)^2 + (\delta V \over V)^2} = 0.0137
\]

\[
\Rightarrow P = 2.14 \pm 0.03 \text{ W} \); \(R = 0.486 \pm 0.007 \Omega \)
\[q = xy + \frac{x^2}{y} \quad ; \quad x = 6 \pm 0.1 \quad y = 3.0 \pm 0.1 \]

Cannot separate the variables \(x \) and \(y \) so must use

\[(\delta q)^2 = \left(\frac{\delta q}{\delta x} \right)^2 + \left(\frac{\delta q}{\delta y} \right)^2 \]

\[\frac{\delta q}{\delta x} = y + 2x = 7 \]

\[\frac{\delta q}{\delta y} = x - \frac{x^2}{y^2} = 2 \]

Note: \(\frac{\delta q}{\delta x} \) is larger than \(\frac{\delta q}{\delta y} \), which tells us that the formula is more sensitive to changes in \(x \) than in \(y \).

Also note: \(\frac{\delta q}{\delta y} = x - \frac{x^2}{y^2} \), which means that an error in \(y \)'s contribution to term (1) is partially cancelled by the contribution to term (2).

Substituting: \(q = 6.3 + \frac{3.6}{3} = 30 \)

\[(\delta q)^2 = (7.0.1)^2 + (2.0.1)^2 \]

\[\Rightarrow \delta q = 0.7 \]

So \(q = 30 \pm 0.7 \)
4.16 We have \(\bar{g} = \frac{\Sigma g_i}{5} = 9.7 \text{m/s}^2 \)

Estimated standard deviation \(\sigma_g = \sqrt{\frac{\Sigma (g_i - \bar{g})^2}{N-1}} = 0.158 \text{m/s}^2 \)

\(\Rightarrow \) Standard error of mean \(\sigma_{\bar{g}} = \frac{\sigma_g}{\sqrt{N}} = 0.07 \)

So best estimate of \(g \) is \(\bar{g} = 9.7 \pm 0.07 \text{m/s}^2 \)

Compare with accepted \(g = 9.81 \text{m/s}^2 \)

\[t = \frac{|g - \bar{g}|}{\sigma_{\bar{g}}} = \frac{|9.8 - 9.7|}{0.07} = 1.4 \text{ standard deviations} \]

So the result is consistent with the accepted value.

From Appendix A, Prob \((|t| \leq 1.4) = 83.85\% \)

so we can accept this result at the 96.15\% confidence level.
4.23 \[e = K \eta^{3/2} \]

So we need to find the small change \(\delta e \) due to a small systematic error \(\delta \eta \)

\[\ln e = \ln K + \frac{3}{2} \ln \eta \]

Differentiate \[\Rightarrow \frac{\delta e}{e} = \frac{3}{2} \frac{\delta \eta}{\eta} \]

So if \(\frac{\delta \eta}{\eta} = 0.4\% = 0.004 \), \[\frac{\delta e}{e} = \frac{3}{2} \times 0.004 \]

\[\Rightarrow \frac{\delta e}{e} = 0.6 \% \text{ fractional error.} \]

4.25 \[u = f \lambda \text{ with } \lambda = 11.2 \pm 0.5 \text{cm, } f = 3000 \pm 30 \text{Hz (1\%)} \]

\[\Rightarrow u = f \lambda = 3000 \times 0.112 \text{m} = 336 \text{ m/s} \]

Resulting uncertainty given by:

\[(\frac{\delta u}{u})^2 = (\frac{\delta f}{f})^2 + (\frac{\delta \lambda}{\lambda})^2 \]

a) With \(\frac{\delta f}{f} = 0.1 \), \(\frac{\delta \lambda}{\lambda} = \frac{0.5}{11.2} = 0.0446 \Rightarrow \frac{\delta u}{u} = 0.046 \),

\[\Rightarrow u = 336 \pm 15.4 \text{ m/s} \]

b) Now with \(\frac{\delta f}{f} = 0.03 \text{ (3\%)} \), \(\frac{\delta \lambda}{\lambda} = \frac{0.03}{11.2} = 0.009 \)

\[\Rightarrow \frac{\delta u}{u} = 0.0313, \text{ dominated by error in } f. \]

\[\Rightarrow u = 336 \pm (336 \times 0.0313) \text{ m/s} \]
\[= 336 \pm 10.5 \text{ m/s} \]