Detection of Z' Gauge Bosons in the Di-muon Decay Mode

Robert Cousins, Jason Mumford and Slava Valuev

University of California, Los Angeles

CMS Physics Meeting

June 10, 2004
Introduction

- \(Z'\) bosons appear in many models beyond SM.
- \(Z' \rightarrow \mu^+\mu^-\) is on list to be studied extensively for Physics TDR:
 - Detailed signal and background studies, with the use of most complex available tools (full simulation, full reconstruction, etc.).
 - As close to reality as possible (background uncertainties, detector misalignment, calibration and B field uncertainties, etc.).
 - Strategy for physics as a function of luminosity.

- Main \(Z'\) physics goals:
 - Understand discovery potential and optimize the search strategy
 • main observable: \(M_{\mu^+\mu^-}\). **This analysis**
 - Work out algorithms to distinguish among models (incl. graviton) and study properties, once discovered **Work in progress**
 • main observables: \(A_{FB}\) on- and off-peak, \(y\), \(\sigma \cdot Br\), \(\Gamma\).
This analysis is discussed in more detail in:

- Analysis note CMS AN 2004/002.
- Talk at PRS meeting, 11 May 2004.

Talks on related subjects by UCLA group (see other references therein):

- A Look at Track Quality Variables Inside Kalman Filter Fits to Tracker and Muon Hits (PRS/μ meeting, 18 Feb. 2003).
- Status of Z' Background Study for Data Challenge 2004 (PRS/μ meeting, 1 April 2003).
- Status of a Study of High-Mass Muon Pairs from Drell-Yan, Z', and Gravitons (SUSY/BSM meeting, 7 May 2003).
- Root-Based Muon Analysis - A Users Perspective (Analysis Micro-Workshop, 1 July 2003).
- Progress in Fitting High-Momentum Muons in ORCA (PRS/μ and SUSY/BSM meetings, 16-17 Sept. 2003).
- Modus Operandi for Z' Analysis (EMU meeting, 10 January 2004).
- Status of a Study of Simulated and Reconstructed Z' Events in CMS (Workshop on Muons at the LHC and Tevatron, 14 April 2004).
Z' → μ⁺μ⁻: signal and backgrounds

- Z's arise in many models:
 - Z_{SSM} in sequential standard model (benchmark toy model);
 - \(Z' = Z_\psi \cos \theta_{E6} + Z_\chi \sin \theta_{E6}\) in E₆ and/or SO(10) models:
 - \(Z_\psi, Z_\chi, Z_\eta (\theta_{E6} = 37.78^\circ)\);
 - \(Z_{LRM}\) and \(Z_{ALRM}\) in left-right symmetric models;
 - etc.

- Limits on the mass:
 - Current: 600-800 GeV;
 - Expected by LHC start-up: \(\leq 1\) TeV.

- Br(Z' → μ⁺μ⁻): 2-8%
 (if no exotic decay channels are open)

- Dominant (and irreducible) background: Drell-Yan production of muon pairs pp → γ/Z⁰ → μ⁺μ⁻.

- Other sources: ZZ, WZ, WW, tt-bar, bb-bar, etc.
 (studied as part of setting up DC04)
Generation and reconstruction

- **Monte Carlo samples:**

 couplings from literature, generated with PYTHIA6.1

 - Z_{SSM}, Z_{ψ}, Z_η, Z_χ, Z_{LRM}, Z_{ALRM} at 1, 3 and 5 TeV decaying to $\mu^+\mu^-$ (1000 events each);

 - Drell-Yan $\mu^+\mu^-$ pairs above 0.2, 0.4, 1, 1.5, 2 and 3 TeV (1000 events each).

- **Simulation and reconstruction:**

 CMSIM 125, ORCA_6_3_0 (no pile-up)

 - apply L1 and HLT requirements (p_T and η thresholds et al., except for isolation);

 - use MuonAnalysis package as an analysis framework;

 - use L1-seeded Global Muon Reconstructor (GMR) for muon identification;

 - for off-line reconstruction, refit the GMR-found hits using an optimized combination of tracker-plus-first-muon-station and tracker-only fits (Truncated Muon Reconstructor, TMR) → see three next slides.
Some possible track fitting methods

- Tracker plus full muon system ("Global Muon Reconstructor", GMR)
 - 5 Parameter measurement at inner surface of tracker from backward part of Kalman filter fit to tracker and muon hits (default fitting method).
 - [Link](http://agenda.cern.ch/askArchive.php?base=agenda&categ=a03423&id=a03423s1t0/transparencies) for more information.

- Tracker only
 - Use only tracker hits for Kalman filter. Take measurement from innermost tracker surface.
 - Available as reconstruction option in ORCA (implementation by N. Neumeister).

- Tracker plus first muon station
 - Use tracker and hits from first muon station which contains hits.
Optimization of high-p_T muon track fitting

- Different fitting methods offer certain features:
 - GMR – current default for muons, uses all muon hits.
 - Tracker only – smallest p_T-resolution tails, smallest RMS in barrel, and (currently) best pulls.
 - Tracker plus first muon station – best fitted p_T-resolution sigma of the 3 methods considered.

- Fits can be compared to choose fit method track-by-track.
 - Kalman filter variables can be used as criteria for replacing bad fits.
 - Currently use tracker-plus-first-muon-station fit, but replace it by tracker-only fit if it has much better probability of χ^2 given N degrees of freedom (about 10% of all tracks).

("Truncated Muon Reconstructor", TMR)

(See J. Mumford’s talks at PRS/μ meetings in February and September 2003 for more details.)
Z_{SSM} (3 TeV) vs Drell-Yan background

TMR has narrower signal, perhaps reduced background tails.

ORCA 6.3.0 Digis
MuonAnalysis package
Note: Optimization algorithm was tuned on different sample.
Event selection

- Both μ^+ and μ^- should be within $|\eta| < 2.4$ and pass the trigger:
 - Acceptance efficiency: raises from about 80% at 1 TeV to more than 95% at very high $M_{\mu\mu}$ (Figure below);
 - L1/HLT trigger efficiency: about 98% at 1 TeV, about 95% at 5 TeV.

- Require that there are at least two μ’s of opposite charge sign.
- No background-rejection cuts.
- Overall efficiency: 70-75% (1-5 TeV).
Fitting procedure

• Generate ensembles of MC experiments:
 – number of events in each experiment fluctuates according to Poisson distribution with a mean of $\sigma \cdot Br \cdot (\int L dt) \cdot \varepsilon$;
 – appropriately add Drell-Yan contribution from lower masses.

• In each experiment, fit $M_{\mu\mu}$ values using an unbinned maximum likelihood:

 $$p(M_{\mu\mu}) = \frac{N_s}{N_{tot}} \cdot p_s(M_{\mu\mu}; m_0, \Gamma) + \left(1 - \frac{N_s}{N_{tot}}\right) \cdot p_b(M_{\mu\mu})$$

 – p_s (signal pdf) is a convolution of a Breit-Wigner with a Gaussian smearing;
 – p_b (background pdf) is an exponential, with the slope parameter determined from fits to Drell-Yan events.

Up to three free parameters: signal fraction (N_s / N_{tot}), signal mean (m_0), and signal FWHM (Γ).

No constraints on the absolute background level: fit assumes only background shape is known.
Example: Z_ψ at 1 TeV, $\int L dt = 0.1 \text{ fb}^{-1}$

"Non-fluctuating" mass spectra:
(stat. much larger than expected)
generated and reconstructed

(1 TeV: just above expected
CDF/D0 mass reach;
$\int L dt = 0.1 \text{ fb}^{-1}$: a few days of
LHC low-luminosity running)

Realistic mass spectra:
two typical MC experiments

$S_L = 7.1$

$S_L = 3.6$
Fit results: m_0 and Γ

- **Signal mean mass**: close to true value, small spread. Measured with precision of 4% (at high masses and discovery limit) or better

![Graph 1 TeV Zp, 0.1 fb⁻¹](image1)

1 TeV Z_p, $\int L dt = 0.1$ fb⁻¹
Mean mass = 998 GeV; RMS = 19 GeV

![Graph 3 TeV ZSSM, 5 fb⁻¹](image2)

3 TeV Z_{SSM}, $\int L dt = 5$ fb⁻¹
Mean mass = 2960 GeV; RMS = 80 GeV

(Still have to account for the radiative tail in the mass distribution in the fits)

- **Signal Γ**: hard to reconstruct (FWHM dominated by resolution smearing)
Significance estimators (I)

Discussed in detail in V. Bartsch and G. Quast, CMS IN 2003/039

- Use likelihood-ratio estimator S_L to calculate significance of an observed “signal”:

$$S_L = \sqrt{2 \ln \left(\frac{L_{S+B}}{L_B} \right)}, \text{ where}$$

- L_{S+B} is the maximum likelihood from the signal-plus-background fit (p),
- L_B is the maximum likelihood from the background-only fit (p_b).

Justification:

- In the large-statistics limit, S_L^2 is expected to follow a χ^2-distribution with ndof equal to the difference in the number of free parameters between S+B and B-only hypotheses (theorem proved by S.S. Wilks in 1938).
- If ndof is one, then distribution of S_L is a standard Gaussian.
- Therefore, S_L gives the probability (expressed in number of σ’s) that the pure background fakes a signal (i.e. significance).
Significance estimators (II)

- For comparison with S_L, also try a few other commonly used ("counting") estimators:

 $$S_{c1} = \frac{N_S}{\sqrt{N_B}},$$
 $$S_{c2} = \frac{N_S}{\sqrt{N_S + N_B}},$$
 $$S_{c12} = 2 \times (\sqrt{N_S + N_B} - \sqrt{N_B}),$$

 (proposed by S. Bityukov and N. Krasnikov)

 $$S_{cL} = \sqrt{2 \ln \left(\frac{1 + N_S/N_B}{N_S + N_B} \exp(-N_S) \right)}.$$

 N_S and N_B – number of signal and background events within $m_0 \pm 2\sigma$.

- Usual convention: $S > 5$ is necessary to establish a discovery
 (probability of $2.9 \cdot 10^{-7}$ that the pure background would mimic a signal)
Significance estimators: MC study

- Important caveat: Wilks’ theorem is valid in the large-statistics limit, whereas we are in the small-statistics regime.

Need to check that the tails of S_L distribution for the background-only sample are those of the normal Gaussian.

- Perform a (large) number of background-only MC experiments to obtain the distributions of various definitions of S given above.
- Calculate the probability (p-value) of observing a value of S greater than S_{crit} (how often a false discovery would be claimed for a certain choice of S_{crit}).
- See how well this probability agrees with area in the tail of a Gaussian distribution.
Background to 3 TeV Z' (30 fb$^{-1}$)

1,000,000 MC experiments
$\langle N_{\text{evt}} \rangle$ above 1.5 TeV: 33
$\langle N_{\text{evt}} \rangle$ within $m_0 \pm 2\sigma_m$: 2.3

Fix both m_0 and Γ to true values
(see Wilks' theorem)

too many events at large S_{c1}

Observed:
$S_L > 3$: 1310 events
$S_L > 4$: 38 events
$S_L > 5$: 1 events

Expected for a Gaussian:
Above 3σ: 1350 events
Above 4σ: 31.5 events
Above 5σ: 0.3 events
Significance estimators: MC study

- Check p-values for a few other integrated luminosities and signal mass points:
 - in these cases tail of S_L distribution is always consistent with that of a Gaussian;
 - all other S estimators may overestimate or underestimate the probability of a false discovery.

- Also check distributions of S for signal-plus-background fits:
 - $S_{c1} \gg S_L$, $S_{c12} \sim S_L$ for all masses, luminosities, Z' models;
 - S_L is always symmetric and Gaussian-like.

Significance estimator S_L performs as desired for Z' mass reach studies (low background, small statistics regime).

Similarly good performance of S_L was seen by Bartsch and Quast in $H \rightarrow 4\mu$ studies, in a different sig/bknd regime.
Z_ψ at 1 TeV, 0.1 fb$^{-1}$: significance

Fix both m_0 and Γ to true values to calculate S_L

- $S_{c1} >> S_L$
- $S_{c2} < S_L$
- $S_{c12} \leq S_L$

(in agreement with other Z' models, masses, luminosities tried)

- For 0.1 fb$^{-1}$, average S_L is more than 5 for all the Z' models considered.
- TMR reconstruction of high-p_T muons gives $\sim 5\%$ higher S_L (15\% at 3 TeV, 30\% at 5 TeV).
- S_L scales very nicely with $\sqrt{L dt}$.

CMS Physics Meeting
June 10, 2004

R. Cousins, J. Mumford, S. Valuev
Z' → μ⁺μ⁻: CMS discovery potential

Z' → μ⁺μ⁻: 5σ significance curves

Z' → μ⁺μ⁻ mass reach:
- > 1 TeV with 0.1 fb⁻¹
- 2.7 – 3.6 TeV with 10 fb⁻¹
- 3.7 – 4.7 TeV with 100 fb⁻¹

(if GMR is used, 100 GeV less with 10 fb⁻¹ and 200 GeV less with 100 fb⁻¹)

N.B.: no syst. uncertainties
- Perfect alignment, calibration, B field;
- Background shape, functional forms of pdf’s, mass resolution perfectly known.

ORCA 6.3.0
no pile-up

CMS Physics Meeting
June 10, 2004
A critical look

• Main weak point: systematic uncertainties are not taken into account.
 – Arising from imperfect knowledge of the detector: alignment, magnetic field, calibration, etc.
 – In the fitting procedure: background shape, functional forms of pdf’s, mass resolution, etc.

• Some other items to be improved/checked:
 – Brem photons. Not used in the reconstruction of muon momentum; residual radiative tail not accounted for in the fits.
 – Software. Set of PYTHIA, CMSIM and ORCA is 1.5 years old.
 – Event rates. Given by PYTHIA; need to check K-factors.
 – Pile-up. Neglected; effect is expected to be small, but not proven.

How does this study compare with the previous ones?
Previous studies of CMS discovery potential (I)

Estimates of the CMS potential to discover Z' were previously reported by four groups/individuals. In chronological order:

- **C.E. Wulz:** *(CMS-TN/93-107 and DPF/DPB Snowmass (1996))*
 - **Tools:** PYTHIA version available at that time; muon momentum smeared using parameterization by W. Ko and J. Rowe *(CMS TN/95-026)*.
 - **Criterion for Z' discovery:** more than 10 signal (di-muon plus di-electron) events in the mass peak.
 - **Conclusion:** it will be possible to discover Z' bosons up to a mass of about 5 TeV with an integrated luminosity of 100 fb$^{-1}$ (in a combined analysis of $Z' \rightarrow \mu^+\mu^-$ and $Z' \rightarrow e^+e^-$ channels).

- **D. Bourilkov:** *(CMS IN-2000/035 and CERN-YR-2000-004)*
 - **Study mainly dedicated to Drell-Yan production of lepton pairs at LHC.**
 - **Tools:** PYTHIA; no further details given.
 - **Conclusion:** “Z' resonances with masses up to ~ 4-5 TeV can be probed at LHC”.
Previous studies of CMS discovery potential (II)

– JINR group (V. Palichik, S. Shmatov et al.):

(hep-ph/0310336, talks at CMS physics (30 April 2002) and SUSY/BSM meetings (7 May 2003); presented at “Physics at LHC”, Prague 2003)

• **Tools:** PYTHIA; muon momentum smeared using parameterization by W. Ko and J. Rowe.

• **Criterion for Z’ discovery:** $S_{c1} > 5$ and at least 10 signal events under the mass peak.

• **Conclusions:** Z’ mass reach is in the range between 2.5 and 3 TeV for an integrated luminosity of 10 fb$^{-1}$, and between 3.5 and 4 TeV for a luminosity of 100 fb$^{-1}$ (for a set of Z’ models similar to one we studied).

– ETH group (M. Dittmar et al.):

• Study focused on observables other than $M_{\mu^+\mu^-}$.

• **Tools:** PYTHIA; no details given on how the stated mass reach was obtained.

• **Conclusion:** “reconfirm the known Z’ boson LHC discovery potential, to reach masses up to about 5 TeV for a luminosity of 100 fb$^{-1}$”.

Previous studies of CMS discovery potential (II)
Comparison with previous studies

This study has two main advantages:

• Full simulation and reconstruction of signal and background; therefore, takes into account:
 – Trigger and track-finding inefficiencies;
 – Charge misassignment;
 – Details of detector acceptance;
 – Momentum and mass resolution, etc.

• Appropriate statistical techniques to quantify the mass reach.

We believe it gives somewhat more justifiable estimates of CMS discovery potential in \(Z' \rightarrow \mu^+\mu^- \) channel, while still suffering from the lack of systematic errors.
Summary

• We have set up a procedure for studying and quantifying the Z' mass reach. Main points:
 – Full simulation (CMSIM) and reconstruction (ORCA6) as input;
 – Unbinned M.L. fits exploring signal and background shapes only;
 – Likelihood-ratio significance estimator, shown to perform as desired.

• We have obtained mass reach estimates in $Z' \rightarrow \mu^+\mu^-$ channel, with systematic uncertainties yet to be accounted for:
 – More than 5σ significance above 1 TeV at the earliest stages of data-taking;
 – Average 5σ significance at a mass of 3.7-4.7 TeV (depending on the model) with an integrated luminosity of 100 fb$^{-1}$.

• Plan to evaluate systematic uncertainties and their impact, and improve/check other items mentioned earlier.
Acknowledgements

• We would like to thank all the members of CMS who contributed to the software packages used in this study.

• We are particularly grateful to:
 – Norbert Neumeister, for his assistance and numerous useful discussions on reconstruction-related issues.
 – Our referees (Marcos Cerrada, Marcella Diemoz, and Stefano Lacaprara), for careful reading of the note and helpful comments and questions.
Backup slides follow
Background to 5 TeV Z' (300 fb\(^{-1}\))

1,000,000 MC experiments

\(<N_{\text{evt}} > \) above 3 TeV: 7.0
\(<N_{\text{evt}} > \) within \(m_0 \pm 2\sigma_m \): 1.4

too many events in the tails

\(S_L > 3 \): 1343 events
\(S_L > 4 \): 36 events
\(S_L > 5 \): 0 events

Expected for a Gaussian:
Above 3\(\sigma \): 1350 events
Above 4\(\sigma \): 31.5 events
Above 5\(\sigma \): 0.3 events

\(N_S \)/\(\sqrt{N_B} \)
Example at 3 TeV: Z_{SSM} at 10 fb$^{-1}$

"Non-fluctuating" mass spectra: (stat. much larger than expected) generated and reconstructed

Realistic mass spectra: two typical MC experiments

$\sigma_m = 5.7\%$

$S_L = 10.1$

$S_L = 5.6$
Z_{SSM} at 3 TeV, 10 fb^{-1}: significance

- $S_{c1} \gg S_L$
- $S_{c2} < S_L$
- $S_{c12} \sim S_L$

for all Z' models, masses, luminosities tried

Bartsch and Quast also found that S_{c1} badly overestimates true S
Z' at 3 TeV: S_L significance

<table>
<thead>
<tr>
<th>$\int L \cdot dt$</th>
<th>Z_{SSM}</th>
<th>Z_ψ</th>
<th>Z_η</th>
<th>Z_χ</th>
<th>Z_{LRM}</th>
<th>Z_{ALRM}</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 fb$^{-1}$ OPT</td>
<td>8.9</td>
<td>3.6</td>
<td>4.3</td>
<td>5.5</td>
<td>6.6</td>
<td>10.6</td>
</tr>
<tr>
<td>10 fb$^{-1}$ GMR</td>
<td>7.7</td>
<td>3.2</td>
<td>3.5</td>
<td>4.7</td>
<td>5.7</td>
<td>9.0</td>
</tr>
<tr>
<td>2 fb$^{-1}$ OPT</td>
<td>3.9</td>
<td>1.5</td>
<td>1.9</td>
<td>2.3</td>
<td>2.9</td>
<td>4.7</td>
</tr>
</tbody>
</table>

- For 10 fb$^{-1}$, S is more than 5 for most of the Z' models considered;
- For 2 fb$^{-1}$, S is less than 5 for all models;
 - S_L scales nicely with $\sqrt{L_{int}}$
- TMR reconstruction of high-p_T muons helps (~15% gain).
Example at 5 TeV: Z_ψ at 100 fb$^{-1}$

"Non-fluctuating" mass spectra: (stat. much larger than expected) generated and reconstructed

Background flattens out with mass; how well can it be controlled?

Realistic mass spectra: two typical MC experiments

B-only fit

S+B fit

CMS Physics Meeting
June 10, 2004

R. Cousins, J. Mumford, S. Valuev
Z' at 5 TeV: S_L significance

<table>
<thead>
<tr>
<th>$\int L \cdot dt$</th>
<th>Z_{SSM}</th>
<th>Z_{ψ}</th>
<th>Z_{η}</th>
<th>Z_{χ}</th>
<th>Z_{LRM}</th>
<th>Z_{ALRM}</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 fb$^{-1}$ OPT</td>
<td>2.9</td>
<td>1.4</td>
<td>1.6</td>
<td>1.8</td>
<td>2.2</td>
<td>3.9</td>
</tr>
<tr>
<td>100 fb$^{-1}$ GMR</td>
<td>2.3</td>
<td>1.2</td>
<td>1.2</td>
<td>1.4</td>
<td>1.7</td>
<td>3.0</td>
</tr>
<tr>
<td>300 fb$^{-1}$ OPT</td>
<td>5.2</td>
<td>2.4</td>
<td>2.8</td>
<td>3.3</td>
<td>3.9</td>
<td>6.8</td>
</tr>
</tbody>
</table>

- For 100 fb$^{-1}$, S is less than 5 for all Z' models considered;
- For 300 fb$^{-1}$, S is still less than 5 for most of the models;
- Again, TMR reconstruction results in a higher S (by \sim 30%).