Example: A spherical pendulum

Consider a pendulum bob of mass \bgroup\color{black}$ m$\egroup hanging from the ceiling by a string of length \bgroup\color{black}$ \ell$\egroup and free to move in two dimensions like the Foucault pendulum. The free variables are \bgroup\color{black}$ \theta$\egroup and \bgroup\color{black}$ \phi$\egroup of spherical coordinates and the energies are given by

$\displaystyle U$ $\displaystyle =-mgl\cos\theta$    
$\displaystyle T$ $\displaystyle ={1\over 2}m\ell^2\left(\dot{\theta}^2+\sin^2\theta\dot{\phi}^2\right)$    
$\displaystyle H$ $\displaystyle =T+U .$    

We may calculate the momenta and write the Hamiltonian as a function of them.

$\displaystyle p_\phi$ $\displaystyle = {\partial T\over \partial \dot{\phi}}=m\ell^2\sin^2\theta\dot{\phi}$    
$\displaystyle p_\theta$ $\displaystyle = {\partial T\over \partial \dot{\theta}}=m\ell^2\dot{\theta}$    
$\displaystyle H$ $\displaystyle =T+U={1\over 2m\ell^2}\left(p_\theta^2+{p_\phi^2\over \sin^2\theta}\right) -mgl\cos\theta$    
$\displaystyle \dot{p}_\phi$ $\displaystyle =-{\partial H\over\partial \phi}=0$    
$\displaystyle \dot{p}_\theta$ $\displaystyle =-{\partial H\over\partial \theta}={p_\phi^2\cos\theta\over m\ell^2\sin^3\theta}-mg\ell \sin\theta$    

This last equation, the equation of motion, shows a pseudopotential like that of angular momentum in the orbit problem. \bgroup\color{black}$ p_\phi$\egroup will be set by initial conditions.

Jim Branson 2012-10-21