

Physics 2D Lecture Slides Feb 25

Vivek Sharma
UCSD Physics

Factorization Condition For Wave Function Leads to:

$$\left| \frac{-\hbar^2}{2m} \frac{\partial^2 \psi(x)}{\partial^2 x} + U(x)\psi(x) = E \ \psi(x) \right|$$

$$i\hbar \frac{\partial \phi(t)}{\partial t} = E\phi(t)$$

What is the Constant E? How to Interpret it?

Back to a Free particle:

$$Ψ(x,t)= Ae^{ikx}e^{-iωt}, ψ(x)= Ae^{ikx}$$

$$U(x,t)=0$$

Plug it into the Time Independent Schrodinger Equation (TISE) ⇒

$$\frac{-\hbar^2}{2m} \frac{d^2 (Ae^{(ikx)})}{dx^2} + 0 = E \ Ae^{(ikx)} \implies E = \frac{\hbar^2 k^2}{2m} = \frac{p^2}{2m} = (NR \ Energy)$$

Stationary states of the free particle: $\Psi(x,t) = \psi(x)e^{-i\omega t}$

$$\Rightarrow |\Psi(x,t)|^2 = |\psi(x)|^2$$

Probability is static in time t, character of wave function depends on $\psi(x)$

A More Interesting Potential: Particle In a Box (like an atom)

Write the Form of Potential: Infinite Wall

$$U(x,t) = \infty; x \le 0, x \ge L$$

$$U(x,t) = 0 ; 0 > X > L$$

Classical Picture:

- •Particle dances back and forth
- Constant speed, const KE
- •Average <P> = 0
- •No restriction on energy value

•
$$E=K+U=K+0=P^2/2m$$

- •Particle can not exist outside box
 - •Can't get out because needs to borrow infinite energy to overcome potential of wall

What happens when the joker is subatomic in size ??

Example of a Particle Inside a Box With Infinite Potential

- (a) Electron placed between 2 set of electrodes C & grids G experiences no force in the region between grids, which are held at Ground Potential
- However in the regions between each C & G is a repelling electric field whose strength depends on the magnitude of V
- (b) If V is small, then electron's potential energy vs x has low sloping "walls"
- (c) If V is large, the "walls" become very high & steep becoming infinitely high for V→∞
- (d) The Straight infinite walls are an approximation of such a situation

$\Psi(x)$ for Particle Inside 1D Box with Infinite Potential Walls

Inside the box, no force \Rightarrow U=0 or constant (same thing)

$$\Rightarrow \frac{-\hbar^2}{2m} \frac{d^2 \psi(x)}{dx^2} + 0 \ \psi(x) = E \ \psi(x)$$

$$\Rightarrow \frac{d^2 \psi(x)}{dx^2} = -k^2 \psi(x) \; ; \; k^2 = \frac{2mE}{\hbar^2}$$

or
$$\left| \frac{d^2 \psi(x)}{dx^2} + k^2 \psi(x) = 0 \right| \Leftarrow \text{ figure out what } \psi(x) \text{ solves this diff eq.}$$

In General the solution is $\psi(x) = A \sinh x + B \cosh x$ (A,B are constants)

Need to figure out values of A, B: How to do that?

Apply BOUNDARY Conditions on the Physical Wavefunction

We said $\psi(x)$ must be continuous everywhere

So match the wavefunction just outside box to the wavefunction value just inside the box

$$\Rightarrow$$
 At $x = 0 \Rightarrow \psi(x = 0) = 0 & At $x = L \Rightarrow \psi(x = L) = 0$$

$$\psi(x=0) = B = 0$$
 (Continuity condition at x =0)

&
$$\psi(x = L) = 0 \implies A \sin kL = 0$$
 (Continuity condition at x = L)

$$\Rightarrow$$
 kL = n π \Rightarrow k = $\frac{n\pi}{L}$, n = 1, 2, 3, ... ∞

So what does this say about Energy E?: $\left| E_n = \frac{n^2 \pi^2 \hbar^2}{2mL^2} \right|$ Quantized (not Continuous)!

Why can't the particle exist
Outside the box?

→ E Conservation

Quantized Energy levels of Particle in a Box

What About the Wave Function Normalization?

The particle's Energy and Wavefunction are determined by a number n We will call $n\to Quantum$ Number , just like in Bohr's Hydrogen atom

What about the wave functions corresponding to each of these energy states?

$$\psi_{n} = A\sin(kx) = A\sin(\frac{n\pi x}{L}) \quad \text{for } 0 < x < L$$

$$= 0 \quad \text{for } x \ge 0, x \ge L$$

Normalized Condition:

$$1 = \int_{0}^{L} \psi_{n}^{*} \psi_{n} dx = A^{2} \int_{0}^{L} Sin^{2} \left(\frac{n\pi x}{L} \right)$$

$$1 = \frac{A^{2}}{2} \int_{0}^{L} \left(1 - \cos(\frac{2n\pi x}{L}) \right) \text{ and since } \int \cos \theta = \sin \theta$$

$$1 = \frac{A^{2}}{2} L \implies A = \sqrt{\frac{2}{L}}$$

So
$$\psi_{\rm n} = \sqrt{\frac{2}{L}}\sin(kx) = \sqrt{\frac{2}{L}}\sin(\frac{n\pi x}{L})$$
 ...What does this look like?

Wave Functions: Shapes Depend on Quantum # n

Where in The World is Carmen San Diego?

- We can only guess the probability of finding the particle somewhere in x
 - For n=1 (ground state) particle most likely at x = L/2
 - For n=2 (first excited state) particle most likely at L/4, 3L/4
 - Prob. Vanishes at x = L/2 & L
 - How does the particle get from just before x=L/2 to just after?
 - QUIT thinking this way,
 particles don't have
 trajectories
 - » Just probabilities of being somewhere

Classically, where is the particle most Likely to be: Equal prob of being anywhere inside the Box NOT SO says Quantum Mechanics!

Remember Sesame Street?

This particle in the Box is Brought to you by the letter

Its the Big Boss Quantum Number Consider n = 1 state of the particle

Ask: What is P
$$(\frac{L}{4} \le x \le \frac{3L}{4})$$
?

$$P = \int_{\frac{L}{4}}^{\frac{3L}{4}} |\psi_1|^2 dx = \frac{2}{L} \int_{\frac{L}{4}}^{\frac{3L}{4}} \sin^2 \frac{\pi x}{L} dx = \left(\frac{2}{L}\right) \cdot \frac{1}{2} \int_{\frac{L}{4}}^{\frac{3L}{4}} (1 - \cos \frac{2\pi x}{L}) dx$$

$$P = \frac{1}{L} \left[\frac{L}{2} - \right] \left[\frac{L}{2\pi} \sin \frac{2\pi x}{L} \right]_{L/4}^{3L/4} = \frac{1}{2} - \frac{1}{2\pi} \left(\sin \frac{2\pi}{L} \cdot \frac{3L}{4} - \sin \frac{2\pi}{L} \cdot \frac{L}{4} \right)$$

$$P = \frac{1}{2} - \frac{1}{2\pi} (-1 - 1) = 0.818 \Rightarrow 81.8\%$$

Classically \Rightarrow 50% (equal prob over half the box size)

⇒ Substantial difference between Classical & Quantum predictions

When The Classical & Quantum Pictures Merge: n→∞

But one issue is irreconcilable:

Quantum Mechanically the particle can not have E = 0

This is a consequence of the Uncertainty Principle

The particle moves around with KE inversely proportional to the Length
Of the 1D Box

Finite Potential Barrier

- There are no Infinite Potentials in the real world
 - Imagine the cost of as battery with infinite potential diff
 - Will cost infinite \$ sum + not available at Radio Shack
- Imagine a realistic potential: Large U compared to KE but not infinite

Classical Picture : A bound particle (no escape) in 0<x<L

Quantum Mechanical Picture : Use $\Delta E.\Delta t \leq h/2\pi$

Particle can leak out of the Box of finite potential $P(|x|>L) \neq 0$

Finite Potential Well

Schrodinger Eq:

$$\frac{-\hbar^2}{2m} \frac{d^2 \psi(x)}{dx^2} + U \psi(x) = E \quad \psi(x)$$

$$\Rightarrow \frac{d^2 \psi(x)}{dx^2} = \frac{2m}{\hbar^2} (U - E) \psi(x)$$

$$= \alpha^2 \psi(x); \quad \alpha = \sqrt{\frac{2m(U - E)}{\hbar^2}}$$

$$\Rightarrow \text{General Solutions}: \quad \psi(x) = Ae^{+\alpha x} + Be^{-\alpha x}$$
Require finiteness of $\psi(x)$

$$\Rightarrow \psi(x) = Ae^{+\alpha x} \dots x < 0 \quad \text{(region II)}$$

$$\psi(x) = Ae^{-\alpha x} \dots x > L \quad \text{(region III)}$$
Again, coefficients A & B come from matching conditions at the edge of the walls $(x = 0, L)$
But note that wave fn at $\psi(x)$ at $(x = 0, L) \neq 0$!! (why?)
Further require Continuity of $\psi(x)$ and $\frac{d\psi(x)}{dx}$
These lead to rather different wave functions

Finite Potential Well: Particle can Burrow Outside Box

Finite Potential Well: Particle can Burrow Outside Box

Particle can be outside the box but only for a time $\Delta t \approx h/\Delta E$ $\Delta E = \text{Energy particle needs to borrow to}$ Get outside $\Delta E = U-E+KE$ The Cinderella act (of violating E
Conservation cant last very long

Particle must hurry back (cant be caught with its hand inside the cookie-jar)

Penetration Length
$$\delta = \frac{1}{\alpha} = \frac{\hbar}{\sqrt{2m(U-E)}}$$

If U>>E \Rightarrow Tiny penetration
If U $\rightarrow \infty \Rightarrow \delta \rightarrow 0$

Finite Potential Well: Particle can Burrow Outside Box

Penetration Length
$$\delta = \frac{1}{\alpha} = \frac{\hbar}{\sqrt{2m(U-E)}}$$

 $\overline{\text{If U}} > E \implies \text{Tiny penetration}$

If
$$U \rightarrow \infty \Rightarrow \delta \rightarrow 0$$

$$E_n = \frac{n^2 \pi^2 \hbar^2}{2m(L+2\delta)^2}, n = 1, 2, 3, 4...$$

When E=U then solutions blow up

 \Rightarrow Limits to number of bound states(E_n < U)

When E>U, particle is not bound and can get either reflected or transmitted across the potential "barrier"

Particle of mass m within a potential U(x)

$$\vec{F}(x) = -\frac{dU(x)}{dx}$$

$$\vec{F}(x=a) = - \left| \frac{dU(x)}{dx} \right| = 0,$$

$$\vec{F}(x=b) = 0$$
, $\vec{F}(x=c)=0$...But...

look at the Curvature:

$$\frac{\partial^2 U}{\partial x^2} > 0$$
 (stable), $\frac{\partial^2 U}{\partial x^2} < 0$ (unstable)

Stable Equilibrium: General Form:

$$U(x) = U(a) + \frac{1}{2}k(x-a)^2$$

Rescale
$$\Rightarrow U(x) = \frac{1}{2}k(x-a)^2$$

Motion of a Classical Oscillator (ideal)

Ball originally displaced from its equilibirium position, motion confined between x=0 & x=A

$$U(x) = \frac{1}{2}kx^2 = \frac{1}{2}m\omega^2 x^2; \omega = \sqrt{\frac{k}{m}} = Ang. Freq$$

$$E = \frac{1}{2}kA^2 \Rightarrow$$
 Changing A changes E

E can take any value & if $A \rightarrow 0$, $E \rightarrow 0$

Max. KE at
$$x = 0$$
, KE= 0 at $x = \pm A$

Quantum Picture: Harmonic Oscillator

Find the Ground state Wave Function $\psi(x)$

Find the Ground state Energy E when $U(x) = \frac{1}{2}m\omega^2 x^2$

Time Dependent Schrodinger Eqn:
$$\frac{-\hbar^2}{2m} \frac{\partial^2 \psi(x)}{\partial^2 x} + \frac{1}{2} m \omega^2 x^2 \psi(x) = E \psi(x)$$

$$\Rightarrow \left| \frac{d^2 \psi(x)}{dx^2} = \frac{2m}{\hbar^2} (E - \frac{1}{2} m\omega^2 x^2) \psi(x) = 0 \right| \text{ What } \psi(x) \text{ solves this?}$$

Two guesses about the simplest Wavefunction:

- 1. $\psi(x)$ should be symmetric about x = 2. $\psi(x) \to 0$ as $x \to \infty$
 - + $\psi(x)$ should be continuous & $\frac{d\psi(x)}{dx}$ = continuous

My guess: $\psi(x) = C_0 e^{-\alpha x^2}$; Need to find $C_0 \& \alpha$:

What does this wavefunction & PDF look like?

Quantum Picture: Harmonic Oscillator

How to Get $C_0 \& \alpha$?? ... Try plugging in the Wavefunction into Time-Independent Schr. Eqn.