

Physics 2D Lecture Slides Feb 25

Vivek Sharma
UCSD Physics

Factorization Condition For Wave Function Leads to:

$$
\frac{-\hbar^{2}}{2 m} \frac{\partial^{2} \psi(x)}{\partial^{2} x}+U(x) \psi(x)=E \psi(x)
$$

$$
i \hbar \frac{\partial \phi(t)}{\partial t}=E \phi(t)
$$

What is the Constant E ? How to Interpret it?
Back to a Free particle :

$$
\begin{aligned}
& \Psi(x, t)=A e^{i k x} e^{-i \omega t}, \psi(x)=A e^{i k x} \\
& U(x, t)=0
\end{aligned}
$$

Plug it into the Time Independent Schrodinger Equation (TISE) \Rightarrow

$$
\frac{-\hbar^{2}}{2 m} \frac{d^{2}\left(A e^{(i k x)}\right)}{d x^{2}}+0=E A e^{(i k x)} \Rightarrow E=\frac{\hbar^{2} k^{2}}{2 m}=\frac{p^{2}}{2 m}=(\text { NR Energy })
$$

Stationary states of the free particle: $\Psi(\mathrm{x}, \mathrm{t})=\psi(\mathrm{x}) \mathrm{e}^{-\mathrm{i} \omega t}$
$\Rightarrow|\Psi(x, t)|^{2}=|\psi(x)|^{2}$
Probability is static in time t , character of wave function depends on $\psi(x)$

A More Interesting Potential : Particle In a Box (like an atom)

Example of a Particle Inside a Box With Infinite Potential

(a) Electron placed between 2 set of electrodes C \& grids G experiences no force in the region between grids, which are held at Ground Potential However in the regions between each C \& G is a repelling electric field whose strength depends on the magnitude of V
(b) If V is small, then electron's potential energy vs x has low sloping "walls"
(c) If V is large, the "walls"become very high \& steep becoming infinitely high for $\mathrm{V} \rightarrow \infty$
(d) The Straight infinite walls are an approximation of such a situation

$\Psi(x)$ for Particle Inside 1D Box with Infinite Potential Walls

Inside the box, no force $\Rightarrow \mathrm{U}=0$ or constant (same thing)
$\Rightarrow \frac{-\hbar^{2}}{2 \mathrm{~m}} \frac{d^{2} \psi(x)}{d x^{2}}+0 \psi(x)=E \psi(x)$
$\Rightarrow \frac{d^{2} \psi(x)}{d x^{2}}=-k^{2} \psi(x) ; k^{2}=\frac{2 m E}{\hbar^{2}}$
or $\frac{d^{2} \psi(x)}{d x^{2}}+k^{2} \psi(x)=0 \Leftarrow$ figure out what $\psi(\mathrm{x})$ solves this diff eq.
In General the solution is $\psi(x)=A \operatorname{sinkx}+B \operatorname{coskx}$ (A,B are constants)
Need to figure out values of A, B : How to do that?

Apply BOUNDARY Conditions on the Physical Wavefunction

We said $\psi(x)$ must be continuous everywhere
So match the wavefunction just outside box to the wavefunction value just inside the box
\Rightarrow At $\mathrm{x}=0 \Rightarrow \psi(x=0)=0 \&$ At $\mathrm{x}=\mathrm{L} \Rightarrow \psi(x=L)=0$
$\therefore \psi(x=0)=B=0$ (Continuity condition at $\mathrm{x}=0)$
$\& \psi(x=L)=0 \Rightarrow$ A Sin $\mathrm{kL}=0$ (Continuity condition at $\mathrm{x}=\mathrm{L}$)

$$
\Rightarrow \mathrm{kL}=\mathrm{n} \pi \Rightarrow \mathrm{k}=\frac{\mathrm{n} \pi}{\mathrm{~L}}, n=1,2,3, \ldots \infty
$$

So what does this say about Energy E ? : $\mathrm{E}_{\mathrm{n}}=\frac{\mathrm{n}^{2} \pi^{2} \hbar^{2}}{2 m L^{2}}$ Quantized (not Continuous)!

Quantized Energy levels of Particle in a Box

What About the Wave Function Normalization?

The particle's Energy and Wavefunction are determined by a number n We will call $\mathrm{n} \rightarrow$ Quantum Number, just like in Bohr's Hydrogen atom What about the wave functions corresponding to each of these energy states?
$\begin{aligned} \psi_{\mathrm{n}} & =A \sin (k x)=A \sin \left(\frac{n \pi x}{L}\right) & & \text { for } 0<\mathrm{x}<\mathrm{L} \\ & =0 & & \text { for } \mathrm{x} \geq 0, \mathrm{x} \geq \mathrm{L}\end{aligned}$
Normalized Condition :
$1=\int_{0}^{\mathrm{L}} \psi_{\mathrm{n}}{ }^{*} \psi_{\mathrm{n}} d x=A^{2} \int_{0}^{L} \operatorname{Sin}^{2}\left(\frac{n \pi x}{L}\right) \quad$ Use $2 \operatorname{Sin}^{2} \theta=1-2 \operatorname{Cos} 2 \theta$
$1=\frac{A^{2}}{2} \int_{0}^{L}\left(1-\cos \left(\frac{2 n \pi x}{L}\right)\right)$ and since $\int \cos \theta=\sin \theta$
$1=\frac{A^{2}}{2} L \Rightarrow A=\sqrt{\frac{2}{L}}$
So $\psi_{\mathrm{n}}=\sqrt{\frac{2}{L}} \sin (k x)=\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi x}{L}\right) \quad \ldots$ What does this look like?

Wave Functions: Shapes Depend on Quantum \# n

Where in The World is Carmen San Diego?

- We can only guess the probability of finding the particle somewhere in x
- For n=1 (ground state) particle most likely at $\mathrm{x}=\mathrm{L} / 2$
- For n=2 (first excited state) particle most likely at L/4, 3L/4
- Prob. Vanishes at $x=L / 2 \& L$
- How does the particle get from just before $\mathrm{x}=\mathrm{L} / 2$ to just after?
» QUIT thinking this way, particles don't have trajectories
» Just probabilities of being somewhere

Classically, where is the particle most
Likely to be : Equal prob of being anywhere inside the Box
NOT SO says Quantum Mechanics!

Remember Sesame Street?

This particle in the Box is
Brought to you by the letter

n

Its the Big Boss
Quantum Number

How to Calculate the QM prob of Finding Particle in Some region in Space
Consider $\mathrm{n}=1$ state of the particle
Ask: What is $\mathrm{P}\left(\frac{\mathrm{L}}{4} \leq x \leq \frac{3 L}{4}\right)$?
$\mathrm{P}=\int_{\frac{L}{4}}^{\frac{3 L}{4}}\left|\psi_{1}\right|^{2} d x=\frac{2}{L} \int_{\frac{L}{4}}^{\frac{3 L}{4}} \sin ^{2} \frac{\pi x}{L} d x=\left(\frac{2}{L}\right) \cdot \frac{1}{2} \int_{\frac{L}{4}}^{\frac{3 L}{4}}\left(1-\cos \frac{2 \pi x}{L}\right) d x$
$P=\frac{1}{L}\left[\frac{L}{2}-\right]\left[\frac{L}{2 \pi} \sin \frac{2 \pi x}{L}\right]_{L / 4}^{3 L / 4}=\frac{1}{2}-\frac{1}{2 \pi}\left(\sin \frac{2 \pi}{L} \cdot \frac{3 L}{4}-\sin \frac{2 \pi}{L} \cdot \frac{L}{4}\right)$
$P=\frac{1}{2}-\frac{1}{2 \pi}(-1-1)=0.818 \Rightarrow 81.8 \%$

Classically $\Rightarrow 50 \%$ (equal prob over half the box size)
\Rightarrow Substantial difference between Classical \& Quantum predictions

When The Classical \& Quantum Pictures Merge: $\mathrm{n} \rightarrow \infty$

But one issue is irreconcilable:
Quantum Mechanically the particle can not have $\mathrm{E}=0$
This is a consequence of the Uncertainty Principle
The particle moves around with KE inversely proportional to the Length Of the 1D Box

Finite Potential Barrier

- There are no Infinite Potentials in the real world
- Imagine the cost of as battery with infinite potential diff
- Will cost infinite \$ sum + not available at Radio Shack
- Imagine a realistic potential : Large U compared to KE but not infinite

Classical Picture : A bound particle (no escape) in $0<x<L$
Quantum Mechanical Picture : Use $\Delta \mathrm{E} . \Delta \mathrm{t} \leq \mathrm{h} / 2 \pi$
Particle can leak out of the Box of finite potential $\mathrm{P}(|\mathrm{x}|>\mathrm{L}) \neq 0$

Finite Potential Well

Schrodinger Eq:

$$
\begin{aligned}
& \frac{-\hbar^{2}}{2 \mathrm{~m}} \frac{d^{2} \psi(x)}{d x^{2}}+U \psi(x)=E \psi(x) \\
& \Rightarrow \quad \frac{d^{2} \psi(x)}{d x^{2}}=\frac{2 m}{\hbar^{2}}(U-E) \psi(x) \\
&=\alpha^{2} \psi(x) ; \alpha=\sqrt{\frac{2 \mathrm{~m}(\mathrm{U}-\mathrm{E})}{\hbar^{2}}} \\
& \Rightarrow \text { General Solutions }: \psi(x)=A e^{+\alpha x}+B e^{-\alpha x} \\
& \text { Require finiteness of } \psi(x) \\
& \Rightarrow \psi(x)=A e^{+\alpha x} \ldots . . \mathrm{x}<0 \quad \text { (region I) } \\
& \psi(x)=A e^{-\alpha x} \ldots . \mathrm{x}>\mathrm{L} \quad \text { (region III) }
\end{aligned}
$$

Again, coefficients A \& B come from matching conditions at the edge of the walls $(x=0, L)$
But note that wave fn at $\psi(x)$ at $(x=0, L) \neq 0!!$ (why?)
Further require Continuity of $\psi(x)$ and $\frac{d \psi(x)}{d x}$
These lead to rather different wave functions

Finite Potential Well: Particle can Burrow Outside Box

Finite Potential Well: Particle can Burrow Outside Box

Particle can be outside the box but only for a time $\Delta \mathrm{t} \approx \mathrm{h} / \Delta \mathrm{E}$
$\Delta \mathrm{E}=$ Energy particle needs to borrow to
Get outside $\Delta \mathrm{E}=\mathrm{U}-\mathrm{E}+\mathrm{KE}$
The Cinderella act (of violating E
Conservation cant last very long

Particle must hurry back (cant be caught with its hand inside the cookie-jar)
Penetration Length $\delta=\frac{1}{\alpha}=\frac{\hbar}{\sqrt{2 \mathrm{~m}(\mathrm{U}-\mathrm{E})}}$
If $\mathrm{U} \gg \mathrm{E} \Rightarrow$ Tiny penetration
If $\mathrm{U} \rightarrow \infty \Rightarrow \delta \rightarrow 0$

Finite Potential Well: Particle can Burrow Outside Box

$$
\begin{aligned}
& \text { Penetration Length } \delta=\frac{1}{\alpha}=\frac{\hbar}{\sqrt{2 \mathrm{~m}(\mathrm{U}-\mathrm{E})}} \\
& \text { If } \mathrm{U} \gg \mathrm{E} \Rightarrow \text { Tiny penetration } \\
& \text { If } \mathrm{U} \rightarrow \infty \Rightarrow \delta \rightarrow 0
\end{aligned}
$$

$\mathrm{E}_{\mathrm{n}}=\frac{\mathrm{n}^{2} \pi^{2} \hbar^{2}}{2 m(L+2 \delta)^{2}}, n=1,2,3,4 \ldots$
When $\mathrm{E}=\mathrm{U}$ then solutions blow up
\Rightarrow Limits to number of bound states $\left(\mathrm{E}_{\mathrm{n}}<U\right)$
When $\mathrm{E}>\mathrm{U}$, particle is not bound and can get either reflected or transmitted across the potential "barrier"

Stable Equilibrium: General Form :

$$
\begin{aligned}
& \mathrm{U}(\mathrm{x})=\mathrm{U}(\mathrm{a})+\frac{1}{2} k(x-a)^{2} \\
& \text { Rescale } \Rightarrow U(x)=\frac{1}{2} k(x-a)^{2}
\end{aligned}
$$

Motion of a Classical Oscillator (ideal)

Ball originally displaced from its equilibirium position, motion confined between $\mathrm{x}=0$ \& $\mathrm{x}=\mathrm{A}$
$\mathrm{U}(\mathrm{x})=\frac{1}{2} k x^{2}=\frac{1}{2} m \omega^{2} x^{2} ; \omega=\sqrt{\frac{k}{m}}=$ Ang. Freq
$E=\frac{1}{2} k A^{2} \Rightarrow$ Changing A changes E
E can take any value \& if $\mathrm{A} \rightarrow 0, \mathrm{E} \rightarrow 0$
Max. $K E$ at $x=0, K E=0$ at $x= \pm A$

Quantum Picture: Harmonic Oscillator

Find the Ground state Wave Function $\psi(\mathrm{x})$
Find the Ground state Energy E when $\mathrm{U}(\mathrm{x})=\frac{1}{2} m \omega^{2} x^{2}$
Time Dependent Schrodinger Eqn: $\frac{-\hbar^{2}}{2 m} \frac{\partial^{2} \psi(x)}{\partial^{2} x}+\frac{1}{2} m \omega^{2} x^{2} \psi(x)=E \psi(x)$
$\Rightarrow \frac{d^{2} \psi(x)}{d x^{2}}=\frac{2 m}{\hbar^{2}}\left(E-\frac{1}{2} m \omega^{2} x^{2}\right) \psi(x)=0 \quad$ What $\psi(\mathrm{x})$ solves this?

Two guesses about the simplest Wavefunction:

1. $\psi(\mathrm{x})$ should be symmetric about $\mathrm{x} \quad$ 2. $\psi(\mathrm{x}) \rightarrow 0$ as $\mathrm{x} \rightarrow \infty$
$+\psi(\mathrm{x})$ should be continuous $\& \frac{d \psi(\mathrm{x})}{d x}=$ continuous

My guess: $\psi(\mathrm{x})=\mathrm{C}_{0} e^{-\alpha x^{2}} ;$ Need to find $\mathrm{C}_{0} \& \alpha$:

What does this wavefunction \& PDF look like?

Quantum Picture: Harmonic Oscillator

$$
\mathrm{P}(\mathrm{x})=\mathrm{C}_{0}^{2} e^{-2 \alpha x^{2}}
$$

How to Get $\mathrm{C}_{0} \& \alpha$?? ...Try plugging in the Wavefunction into Time-Independent Schr. Eqn.

